电信 电流 外文翻译 外文文献 英文文献 恒流源_第1页
电信 电流 外文翻译 外文文献 英文文献 恒流源_第2页
电信 电流 外文翻译 外文文献 英文文献 恒流源_第3页
电信 电流 外文翻译 外文文献 英文文献 恒流源_第4页
电信 电流 外文翻译 外文文献 英文文献 恒流源_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CURRENTSOURCEACURRENTSOURCEISANELECTRICALORELECTRONICDEVICETHATDELIVERSORABSORBSELECTRICCURRENTACURRENTSOURCEISTHEDUALOFAVOLTAGESOURCETHETERMCONSTANTCURRENTSINKISSOMETIMESUSEDFORSOURCESFEDFROMANEGATIVEVOLTAGESUPPLYFIGURE1SHOWSASCHEMATICFORANIDEALCURRENTSOURCEDRIVINGARESISTORLOADFIGURE1IDEALCURRENTSOURCESINCIRCUITTHEORY,ANIDEALCURRENTSOURCEISACIRCUITELEMENTWHERETHECURRENTTHROUGHITISINDEPENDENTOFTHEVOLTAGEACROSSITITISAMATHEMATICALMODEL,WHICHREALDEVICESCANONLYAPPROACHINPERFORMANCEIFTHECURRENTTHROUGHANIDEALCURRENTSOURCECANBESPECIFIEDINDEPENDENTLYOFANYOTHERVARIABLEINACIRCUIT,ITISCALLEDANINDEPENDENTCURRENTSOURCECONVERSELY,IFTHECURRENTTHROUGHANIDEALCURRENTSOURCEISDETERMINEDBYSOMEOTHERVOLTAGEORCURRENTINACIRCUIT,ITISCALLEDADEPENDENTORCONTROLLEDCURRENTSOURCESYMBOLSFORTHESESOURCESARESHOWNINFIGURE2FIGURE2ANINDEPENDENTCURRENTSOURCEWITHZEROCURRENTISIDENTICALTOANIDEALOPENCIRCUITFORTHISREASON,THEINTERNALRESISTANCEOFANIDEALCURRENTSOURCEISINFINITETHEVOLTAGEACROSSANIDEALCURRENTSOURCEISCOMPLETELYDETERMINEDBYTHECIRCUITITISCONNECTEDTOWHENCONNECTEDTOASHORTCIRCUIT,THEREISZEROVOLTAGEANDTHUSZEROPOWERDELIVEREDWHENCONNECTEDTOALOADRESISTANCE,THEVOLTAGEACROSSTHESOURCEAPPROACHESINFINITYASTHELOADRESISTANCEAPPROACHESINFINITYANOPENCIRCUITTHUS,ANIDEALCURRENTSOURCECOULDSUPPLYUNLIMITEDPOWERFOREVERANDSOWOULDREPRESENTANUNLIMITEDSOURCEOFENERGYCONNECTINGANIDEALOPENCIRCUITTOANIDEALNONZEROCURRENTSOURCEISNOTVALIDINCIRCUITANALYSISASTHECIRCUITEQUATIONWOULDBEPARADOXICAL,EG,50NOREALCURRENTSOURCEISIDEALNOUNLIMITEDENERGYSOURCESEXISTANDALLHAVEAFINITEINTERNALRESISTANCENONECANSUPPLYUNLIMITEDVOLTAGEHOWEVER,THEINTERNALRESISTANCEOFAPHYSICALCURRENTSOURCEISEFFECTIVELYMODELEDINCIRCUITANALYSISBYCOMBININGANONZERORESISTANCEINPARALLELWITHANIDEALCURRENTSOURCETHENORTONEQUIVALENTCIRCUITRESISTORCURRENTSOURCETHESIMPLESTCURRENTSOURCECONSISTSOFAVOLTAGESOURCEINSERIESWITHARESISTORTHECURRENTAVAILABLEFROMSUCHASOURCEISGIVENBYTHERATIOOFTHEVOLTAGEACROSSTHEVOLTAGESOURCETOTHERESISTANCEOFTHERESISTORFORANEARLYIDEALCURRENTSOURCE,THEVALUEOFTHISRESISTORSHOULDBEVERYLARGEBUTTHISIMPLIESTHAT,FORASPECIFIEDCURRENT,THEVOLTAGESOURCEMUSTBEVERYLARGETHUS,EFFICIENCYISLOWDUETOPOWERLOSSINTHERESISTORANDITISUSUALLYIMPRACTICALTOCONSTRUCTAGOODCURRENTSOURCETHISWAYNONETHELESS,ITISOFTENTHECASETHATSUCHACIRCUITWILLPROVIDEADEQUATEPERFORMANCEWHENTHESPECIFIEDCURRENTANDLOADRESISTANCEARESMALLFOREXAMPLE,A5VVOLTAGESOURCEINSERIESWITHA47KOHMSRESISTORWILLPROVIDEANAPPROXIMATELYCONSTANTCURRENTOF1MA5TOALOADRESISTANCEINTHERANGEOF50TO450OHMSACTIVECURRENTSOURCESACTIVECURRENTSOURCESHAVEMANYIMPORTANTAPPLICATIONSINELECTRONICCIRCUITSCURRENTSOURCESCURRENTSTABLERESISTORSAREOFTENUSEDINPLACEOFOHMICRESISTORSINANALOGINTEGRATEDCIRCUITSTOGENERATEACURRENTWITHOUTCAUSINGATTENUATIONATAPOINTINTHESIGNALPATHTOWHICHTHECURRENTSOURCEISATTACHEDTHECOLLECTOROFABIPOLARTRANSISTOR,THEDRAINOFAFIELDEFFECTTRANSISTOR,ORTHEPLATEOFAVACUUMTUBENATURALLYBEHAVEASCURRENTSOURCESORSINKSWHENPROPERLYCONNECTEDTOANEXTERNALSOURCEOFENERGYSUCHASAPOWERSUPPLYBECAUSETHEOUTPUTIMPEDANCEOFTHESEDEVICESISNATURALLYHIGHWHENUSEDINTHECURRENTSOURCECONFIGURATIONJFETANDNFETCURRENTSOURCEAJFETCANBEMADETOACTASACURRENTSOURCEBYTYINGITSGATETOITSSOURCETHECURRENTTHENFLOWINGISTHEIDSSOFTHEFETTHESECANBEPURCHASEDWITHTHISCONNECTIONALREADYMADEANDINTHISCASETHEDEVICESARECALLEDCURRENTREGULATORDIODESORCONSTANTCURRENTDIODESORCURRENTLIMITINGDIODESCLDANENHANCEMENTMODENCHANNELMOSFETCANBEUSEDINTHECIRCUITSLISTEDBELOWSIMPLETRANSISTORCURRENTSOURCEFIGURE3SHOWSATYPICALCONSTANTCURRENTSOURCECCSDZ1ISAZENERDIODEWHICH,WHENREVERSEBIASEDASSHOWNINTHECIRCUITHASACONSTANTVOLTAGEDROPACROSSITIRRESPECTIVEOFTHECURRENTFLOWINGTHROUGHITTHUS,ASLONGASTHEZENERCURRENTIZISABOVEACERTAINLEVELCALLEDHOLDINGCURRENT,THEVOLTAGEACROSSTHEZENERDIODEVZWILLBECONSTANTRESISTORR1SUPPLIESTHEZENERCURRENTANDTHEBASECURRENTIBOFNPNTRANSISTORQ1THECONSTANTZENERVOLTAGEISAPPLIEDACROSSTHEBASEOFQ1ANDEMITTERRESISTORR2THEOPERATIONOFTHECIRCUITISASFOLLOWSVOLTAGEACROSSR2VR2ISGIVENBYVZVBE,WHEREVBEISTHEBASEEMITTERDROPOFQ1THEEMITTERCURRENTOFQ1WHICHISALSOTHECURRENTTHROUGHR2ISGIVENBY222RVIBEERFIGURE3SINCEVZISCONSTANTANDVBEISALSOAPPROXIMATELYCONSTANTFORAGIVENTEMPERATURE,ITFOLLOWSTHATVR2ISCONSTANTANDHENCEIEISALSOCONSTANTDUETOTRANSISTORACTION,EMITTERCURRENTIEISVERYNEARLYEQUALTOTHECOLLECTORCURRENTICOFTHETRANSISTORWHICHINTURN,ISTHECURRENTTHROUGHTHELOADTHUS,THELOADCURRENTISCONSTANTNEGLECTINGTHEOUTPUTRESISTANCEOFTHETRANSISTORDUETOTHEEARLYEFFECTANDTHECIRCUITOPERATESASACONSTANTCURRENTSOURCEASLONGASTHETEMPERATUREREMAINSCONSTANTORDOESNTVARYMUCH,THELOADCURRENTWILLBEINDEPENDENTOFTHESUPPLYVOLTAGE,R1ANDTHETRANSISTORSGAINR2ALLOWSTHELOADCURRENTTOBESETATANYDESIRABLEVALUEANDISCALCULATEDBYOR,SINCEVBEISTYPICALLY0652RBEIV2650RZIVFORASILICONDEVICEIR2ISALSOTHEEMITTERCURRENTANDISASSUMEDTOBETHESAMEASTHECOLLECTORORREQUIREDLOADCURRENT,PROVIDEDHFEISSUFFICIENTLYLARGERESISTANCER1ATRESISTORR1ISCALCULATEDAS,WHERE,KBZSIV112TO2SOTHATR1ISLOWENOUGHTOENSUREADEQUATEIB,ANDHFEMINISTHELOWESTACCEPTABLECURRENTGAINFORTHEMINFERCBHIIPARTICULARTRANSISTORTYPEBEINGUSEDAMORECOMMONCURRENTSOURCEININTEGRATEDCIRCUITSISTHECURRENTMIRRORSIMPLETRANSISTORCURRENTSOURCEWITHDIODECOMPENSATIONTEMPERATURECHANGESWILLCHANGETHEOUTPUTCURRENTDELIVEREDBYTHECIRCUITOFFIGURE3BECAUSEVBEISSENSITIVETOTEMPERATURETEMPERATUREDEPENDENCECANBECOMPENSATEDUSINGTHECIRCUITOFFIGURE4THATINCLUDESASTANDARDDIODEDOFTHESAMESEMICONDUCTORMATERIALASTHETRANSISTORINSERIESWITHTHEZENERDIODEASSHOWNINTHEIMAGEONTHELEFTTHEDIODEDROPVDTRACKSTHEVBECHANGESDUETOTEMPERATUREANDTHUSSIGNIFICANTLYCOUNTERACTSTEMPERATUREDEPENDENCEOFTHECCSRESISTANCER2ISNOWCALCULATEDAS2RRBEZIVSINCEVDVBE065V,THEREFORE,BZDSIKVR1FIGURE4THISMETHODISMOSTEFFECTIVEFORZENERDIODESRATEDAT56VORMOREFORBREAKDOWNDIODESOFLESSTHAN56V,THECOMPENSATINGDIODEISUSUALLYNOTREQUIREDBECAUSETHEBREAKDOWNMECHANISMISNOTASTEMPERATUREDEPENDENTASITISINBREAKDOWNDIODESABOVETHISVOLTAGESIMPLETRANSISTORCURRENTSOURCEWITHLEDANOTHERMETHODISTOREPLACETHEZENERDIODEWITHALIGHTEMITTINGDIODELED1ASSHOWNINFIGURE5THELEDVOLTAGEDROPVDISNOWUSEDTODERIVETHECONSTANTVOLTAGEANDALSOHASTHEADDITIONALADVANTAGEOFTRACKINGCOMPENSATINGVBECHANGESDUETOTEMPERATURER2ISCALCULATEDAS,ANDR1AS,WHEREIDISTHELEDCURRENT2RBEDIVBDSIKVR1FIGURE5FIGURE6ANOTHERCOMMONMETHODISTOUSEFEEDBACKTOSETTHECURRENTANDREMOVETHEDEPENDENCEONTHEVBEOFTHETRANSISTORFIGURE6SHOWSAVERYCOMMONAPPROACHUSINGANOPAMPWITHTHENONINVERTINGINPUTCONNECTEDTOAVOLTAGESOURCESUCHASTHEZENERINANABOVEEXAMPLEANDTHEINVERTINGINPUTCONNECTEDTOTHESAMENODEASTHERESISTORANDEMITTEROFTHETRANSISTORTHISWAYTHEGENERATEDVOLTAGEISACROSSTHERESISTOR,RATHERTHANBOTHTHERESISTORANDTRANSISTORFORDETAILS,SEETHEARTICLEONTHEIDEALOPAMPTHENULLORTHEARTICLEONCURRENTMIRRORDISCUSSESANOTHEREXAMPLEOFTHESESOCALLEDGAINBOOSTEDCURRENTMIRRORSOTHERPRACTICALSOURCESINTHECASEOFOPAMPCIRCUITSSOMETIMESITISDESIREDTOINJECTAPRECISELYKNOWNCURRENTTOTHEINVERTINGINPUTASANOFFSETOFSIGNALINPUTFORINSTANCEANDARESISTORCONNECTEDBETWEENTHESOURCEVOLTAGEANDTHEINVERTINGINPUTWILLAPPROXIMATEANIDEALCURRENTSOURCEWITHVALUEV/RINDUCTORTYPECURRENTSOURCEAMONGSTOTHERAPPLICATIONS,THECIRCUITOFFIGURE7USINGTHELM317VOLTAGEREGULATORISUSEDTOPRESENTASOURCEOFCONSTANTCURRENTINCLASSESWITCHINGELECTRONICAMPLIFIERSFIGURE7CURRENTANDVOLTAGESOURCECOMPARISONMOSTSOURCESOFELECTRICALENERGYMAINSELECTRICITY,ABATTERY,AREBESTMODELEDASVOLTAGESOURCESSUCHSOURCESPROVIDECONSTANTVOLTAGE,WHICHMEANSTHATASLONGASTHEAMOUNTOFCURRENTDRAWNFROMTHESOURCEISWITHINTHESOURCESCAPABILITIES,ITSOUTPUTVOLTAGESTAYSCONSTANTANIDEALVOLTAGESOURCEPROVIDESNOENERGYWHENITISLOADEDBYANOPENCIRCUITIEANINFINITEIMPEDANCE,BUTAPPROACHESINFINITEPOWERANDCURRENTWHENTHELOADRESISTANCEAPPROACHESZEROASHORTCIRCUITSUCHATHEORETICALDEVICEWOULDHAVEAZEROOHMOUTPUTIMPEDANCEINSERIESWITHTHESOURCEAREALWORLDVOLTAGESOURCEHASAVERYLOW,BUTNONZEROOUTPUTIMPEDANCEOFTENMUCHLESSTHAN1OHMCONVERSELY,ACURRENTSOURCEPROVIDESACONSTANTCURRENT,ASLONGASTHELOADCONNECTEDTOTHESOURCETERMINALSHASSUFFICIENTLYLOWIMPEDANCEANIDEALCURRENTSOURCEWOULDPROVIDENOENERGYTOASHORTCIRCUITANDAPPROACHINFINITEENERGYANDVOLTAGEASTHELOADRESISTANCEAPPROACHESINFINITYANOPENCIRCUITANIDEALCURRENTSOURCEHASANINFINITEOUTPUTIMPEDANCEINPARALLELWITHTHESOURCEAREALWORLDCURRENTSOURCEHASAVERYHIGH,BUTFINITEOUTPUTIMPEDANCEINTHECASEOFTRANSISTORCURRENTSOURCES,IMPEDANCESOFAFEWMEGOHMSATDCARETYPICALANIDEALCURRENTSOURCECANNOTBECONNECTEDTOANIDEALOPENCIRCUITBECAUSETHISWOULDCREATETHEPARADOXOFRUNNINGACONSTANT,NONZEROCURRENTFROMTHECURRENTSOURCETHROUGHANELEMENTWITHADEFINEDZEROCURRENTTHEOPENCIRCUITNORCANANIDEALVOLTAGESOURCEBECONNECTEDTOANIDEALSHORTCIRCUITR0,SINCETHISWOULDRESULTASIMILARPARADOXOFFINITENONZEROVOLTAGEACROSSANELEMENTWITHDEFINEDZEROVOLTAGETHESHORTCIRCUITBECAUSENOIDEALSOURCESOFEITHERVARIETYEXISTALLREALWORLDEXAMPLESHAVEFINITEANDNONZEROSOURCEIMPEDANCE,ANYCURRENTSOURCECANBECONSIDEREDASAVOLTAGESOURCEWITHTHESAMESOURCEIMPEDANCEANDVICEVERSATHESECONCEPTSAREDEALTWITHBYNORTONSANDTHVENINSTHEOREMS恒流源电流源是电气或电子装置,可提供或吸收电流。一个电流源是一个电压源双。术语恒流源有时用来从一个负电压电源馈来源。图1显示了一个理想的电流源驱动的电阻负载的原理图。图1理想电流源1、理想电流源在电路理论,理想电流源电路元件的电流通过时与其两端的电压无关。这是一个数学模型。如果通过一个理想的电流源电流可以指定独立于任何其他变量的电路,它被称为一个独立的电流源。相反,如果其他一些电压或电路中的电流通过一个理想电流源的电流决定,它被称为从属或控制的电流源。这些源符号,如图2所示。图2各种电流源符号一个独立的电流源与零电流是相同的理想开路。基于这个原因,一个理想电流源内阻是无限的。在一个理想的电流源的电压是完全取决于它的连接电路。当连接到短路,存在零电压,从而零功率交付。当连接到负载电阻两端的电压接近源的负载电阻接近无穷大(开路)。因此,一个理想的电流源可提供无限的能量将代表无限的能源来源。连接的理想开路理想非零电流源是无效的,在电路的电路方程分析将是自相矛盾的。没有真正的电流源是理想的(不存在无限的能源),并且所有的有限的内部电阻(没有人能提供无限的电压)。然而,内部电阻电流源建模的有效结合电路分析与理想电流源非零并联电阻(诺顿等效电路)。2、电阻电流源最简单的电流源包括一个与一个电阻器系列电压源。目前从这样的来源可以是由两端的电压源电压比电阻器的电阻提供。对于一个几近完美的电流源,这个电阻值应该是非常大的,但是这意味着,在规定的电流,电压源必须是非常大的。因此,效率低(由于功率的电阻损耗),它通常是不切实际的建好这样的电流源。尽管如此,在很多情况下,这种电路将提供足够的性能时指定的电流和负载电阻小。例如,与一个47K的欧姆电阻器系列5V的电压源将提供一个大约1MA的恒定电流(5),以在50至450欧姆负载电阻范围。3、主动电流源主动电流源在电子电路中的许多重要的应用。(电流)稳定电阻电流源通常用于在模拟集成电路的欧姆电阻的地方产生的电流而不会导致一个在信号路径的电流源连接点的衰减。一个双极晶体管的集电极,一个场效应晶体管,或一个真空管自然表现为(或汇漏电流源盘)当正确连接到外部的能源来源(如电力供应),因为输出这些设备的高阻抗,自然是当电流源配置中使用。4、结型场效应管和NFET电流源一款JFET可作为一所捆绑的大门,它的源电流源。目前则是流动的FET的IDSS的。这些就可以买到这个已经在此设备被称为电流稳压二极管或恒定电流二极管或限流二极管(CLD)的案件有关。一个增强型N沟道MOSFET,可用于下列电路5、简单晶体管电流源图3显示了一个典型的恒定电流源(CCS)的。DZ1是一个齐纳二极管,当这种反向偏置(所示电路),它有一个恒定的电压上,不论是流经它的电流下降。因此,只要齐纳电流(输出型)超过一定水平(称为维持电流),对面的齐纳二极管(VZ)的电压将保持不变。电阻R1用品齐纳电流和基极电流(IB)的的NPN晶体管(Q1)。恒定纳电压是适用于整个Q1和发射极电阻R2基地。电路的操作如下R2的(VR2)电压由下式给出VEVBE中,在VBE中是Q1基地发射极下降。Q1的发射极电流,也是经过R2的电流由下式给出222RVIBEER图3典型恒流源由于VE不变,VBE中也(大约)某一温度恒定,可以得出VR2是恒定的,所以IE也不变。由于晶体管的作用,发射极电流IE是非常接近等于集电极电流的晶体管集成电路(反过来,是当前通过负载)。因此,负载电流为常数(忽略了晶体管,由于早期的效果输出电阻)和电路作为一个恒定电流源的运作。只要温度保持不变(或变化不大),负载电流将是电源电压,R1和晶体管的增益无关。R2的允许负载电流在任何可取的值集,并计算或2RBEIV,由于VBE中通常是065V的硅器件(IR2也是发射极电流,并2650RZIV假设作为收藏家或负载所需的电流,同时提供HFE的足够大)。阻力在电阻,其中,K12到2(使R1是足够低,以确保有足够的IB)BZSIK1,是最低的,特别是可以接受的类型正在使用的晶体MIN2FERCBHIMINFEH管的电流增益。6、简单晶体管电流源与二极管补偿温度的变化会改变输出电流由图3电路交付因为VBE对温度很敏感。温度补偿的依赖可以用图4电路,包括一个标准(作为晶体管的半导体材料相同)与齐纳二极管系列二极管D为在图像显示在左侧。该二极管压降(VD)的追踪VBE中由于温度变化和温度,从而大大抵消了对CCS的依赖。电阻,2RRBEZIV由于VDVBE中065V,因此,,2RZIVR1的计算方法BZD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论