(理工大学本科生毕业设计)高度超静定斜拉桥的非线性分析研究(中英文对照)_第1页
(理工大学本科生毕业设计)高度超静定斜拉桥的非线性分析研究(中英文对照)_第2页
(理工大学本科生毕业设计)高度超静定斜拉桥的非线性分析研究(中英文对照)_第3页
(理工大学本科生毕业设计)高度超静定斜拉桥的非线性分析研究(中英文对照)_第4页
(理工大学本科生毕业设计)高度超静定斜拉桥的非线性分析研究(中英文对照)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

STUDYONNONLINEARANALYSISOFAHIGHLYREDUNDANTCABLESTAYEDBRIDGE1ABSTRACTACOMPARISONONNONLINEARANALYSISOFAHIGHLYREDUNDANTCABLESTAYEDBRIDGEISPERFORMEDINTHESTUDYTHEINITIALSHAPESINCLUDINGGEOMETRYANDPRESTRESSDISTRIBUTIONOFTHEBRIDGEAREDETERMINEDBYUSINGATWOLOOPITERATIONMETHOD,IE,ANEQUILIBRIUMITERATIONLOOPANDASHAPEITERATIONLOOPFORTHEINITIALSHAPEANALYSISALINEARANDANONLINEARCOMPUTATIONPROCEDUREARESETUPINTHEFORMERALLNONLINEARITIESOFCABLESTAYEDBRIDGESAREDISREGARDED,ANDTHESHAPEITERATIONISCARRIEDOUTWITHOUTCONSIDERINGEQUILIBRIUMINTHELATTERALLNONLINEARITIESOFTHEBRIDGESARETAKENINTOCONSIDERATIONANDBOTHTHEEQUILIBRIUMANDTHESHAPEITERATIONARECARRIEDOUTBASEDONTHECONVERGENTINITIALSHAPESDETERMINEDBYTHEDIFFERENTPROCEDURES,THENATURALFREQUENCIESANDVIBRATIONMODESARETHENEXAMINEDINDETAILSNUMERICALRESULTSSHOWTHATACONVERGENTINITIALSHAPECANBEFOUNDRAPIDLYBYTHETWOLOOPITERATIONMETHOD,AREASONABLEINITIALSHAPECANBEDETERMINEDBYUSINGTHELINEARCOMPUTATIONPROCEDURE,ANDALOTOFCOMPUTATIONEFFORTSCANTHUSBESAVEDTHEREAREONLYSMALLDIFFERENCESINGEOMETRYANDPRESTRESSDISTRIBUTIONBETWEENTHERESULTSDETERMINEDBYLINEARANDNONLINEARCOMPUTATIONPROCEDURESHOWEVER,FORTHEANALYSISOFNATURALFREQUENCYANDVIBRATIONMODES,SIGNIFICANTDIFFERENCESINTHEFUNDAMENTALFREQUENCIESANDVIBRATIONMODESWILLOCCUR,ANDTHENONLINEARITIESOFTHECABLESTAYEDBRIDGERESPONSEAPPEARONLYINTHEMODESDETERMINEDONBASISOFTHEINITIALSHAPEFOUNDBYTHENONLINEARCOMPUTATION2INTRODUCTIONRAPIDPROGRESSINTHEANALYSISANDCONSTRUCTIONOFCABLESTAYEDBRIDGESHASBEENMADEOVERTHELASTTHREEDECADESTHEPROGRESSISMAINLYDUETODEVELOPMENTSINTHEFIELDSOFCOMPUTERTECHNOLOGY,HIGHSTRENGTHSTEELCABLES,ORTHOTROPICSTEELDECKSANDCONSTRUCTIONTECHNOLOGYSINCETHEFIRSTMODERNCABLESTAYEDBRIDGEWASBUILTINSWEDENIN1955,THEIRPOPULARITYHASRAPIDLYBEENINCREASINGALLOVERTHEWORLDBECAUSEOFITSAESTHETICAPPEAL,ECONOMICGROUNDSANDEASEOFERECTION,THECABLESTAYEDBRIDGEISCONSIDEREDASTHEMOSTSUITABLECONSTRUCTIONTYPEFORSPANSRANGINGFROM200TOABOUT1000MTHEWORLDSLONGESTCABLESTAYEDBRIDGETODAYISTHETATARABRIDGEACROSSTHESETOINLANDSEA,LINKINGTHEMAINISLANDSHONSHUANDSHIKOKUINJAPANTHETATARACABLESTAYEDBRIDGEWASOPENEDIN1MAY,1999ANDHASACENTERSPANOF890MANDATOTALLENGTHOF1480MACABLESTAYEDBRIDGECONSISTSOFTHREEPRINCIPALCOMPONENTS,NAMELYGIRDERS,TOWERSANDINCLINEDCABLESTAYSTHEGIRDERISSUPPORTEDELASTICALLYATPOINTSALONGITSLENGTHBYINCLINEDCABLESTAYSSOTHATTHEGIRDERCANSPANAMUCHLONGERDISTANCEWITHOUTINTERMEDIATEPIERSTHEDEADLOADANDTRAFFICLOADONTHEGIRDERSARETRANSMITTEDTOTHETOWERSBYINCLINEDCABLESHIGHTENSILEFORCESEXISTINCABLESTAYSWHICHINDUCEHIGHCOMPRESSIONFORCESINTOWERSANDPARTOFGIRDERSTHESOURCESOFNONLINEARITYINCABLESTAYEDBRIDGESMAINLYINCLUDETHECABLESAG,BEAMCOLUMNANDLARGEDEFLECTIONEFFECTSSINCEHIGHPRETENSIONFORCEEXISTSININCLINEDCABLESBEFORELIVELOADSAREAPPLIED,THEINITIALGEOMETRYANDTHEPRESTRESSOFCABLESTAYEDBRIDGESDEPENDONEACHOTHERTHEYCANNOTBESPECIFIEDINDEPENDENTLYASFORCONVENTIONALSTEELORREINFORCEDCONCRETEBRIDGESTHEREFORETHEINITIALSHAPEHASTOBEDETERMINEDCORRECTLYPRIORTOANALYZINGTHEBRIDGEONLYBASEDONTHECORRECTINITIALSHAPEACORRECTDEFLECTIONANDVIBRATIONANALYSISCANBEACHIEVEDTHEPURPOSEOFTHISPAPERISTOPRESENTACOMPARISONONTHENONLINEARANALYSISOFAHIGHLYREDUNDANTSTIFFCABLESTAYEDBRIDGE,INWHICHTHEINITIALSHAPEOFTHEBRIDGEWILLBEDETERMINEDITERATIVELYBYUSINGBOTHLINEARANDNONLINEARCOMPUTATIONPROCEDURESBASEDONTHEINITIALSHAPESEVALUATED,THEVIBRATIONFREQUENCIESANDMODESOFTHEBRIDGEAREEXAMINED3SYSTEMEQUATIONS31GENERALSYSTEMEQUATIONWHENONLYNONLINEARITIESINSTIFFNESSARETAKENINTOACCOUNT,ANDTHESYSTEMMASSANDDAMPINGMATRICESARECONSIDEREDASCONSTANT,THEGENERALSYSTEMEQUATIONOFAFINITEELEMENTMODELOFSTRUCTURESINNONLINEARDYNAMICSCANBEDERIVEDFROMTHELAGRANGESVIRTUALWORKPRINCIPLEANDWRITTENASFOLLOWSKJBJSJAJMQ”DQ32LINEARIZEDSYSTEMEQUATIONINORDERTOINCREMENTALLYSOLVETHELARGEDEFLECTIONPROBLEM,THELINEARIZEDSYSTEMEQUATIONSHASTOBEDERIVEDBYTAKINGTHEFIRSTORDERTERMSOFTHETAYLORSEXPANSIONOFTHEGENERALSYSTEMEQUATION,THELINEARIZEDEQUATIONFORASMALLTIMEORLOADINTERVALISOBTAINEDASFOLLOWSMQ”DQ2KQPUP33LINEARIZEDSYSTEMEQUATIONINSTATICSINNONLINEARSTATICS,THELINEARIZEDSYSTEMEQUATIONBECOMES2KQPUP4NONLINEARANALYSIS41INITIALSHAPEANALYSISTHEINITIALSHAPEOFACABLESTAYEDBRIDGEPROVIDESTHEGEOMETRICCONFIGURATIONASWELLASTHEPRESTRESSDISTRIBUTIONOFTHEBRIDGEUNDERACTIONOFDEADLOADSOFGIRDERSANDTOWERSANDUNDERPRETENSIONFORCEININCLINEDCABLESTAYSTHERELATIONSFORTHEEQUILIBRIUMCONDITIONS,THESPECIFIEDBOUNDARYCONDITIONS,ANDTHEREQUIREMENTSOFARCHITECTURALDESIGNSHOULDBESATISFIEDFORSHAPEFINDINGCOMPUTATIONS,ONLYTHEDEADLOADOFGIRDERSANDTOWERSISTAKENINTOACCOUNT,ANDTHEDEADLOADOFCABLESISNEGLECTED,BUTCABLESAGNONLINEARITYISINCLUDEDTHECOMPUTATIONFORSHAPEFINDINGISPERFORMEDBYUSINGTHETWOLOOPITERATIONMETHOD,IE,EQUILIBRIUMITERATIONANDSHAPEITERATIONLOOPTHISCANSTARTWITHANARBITRARYSMALLTENSIONFORCEININCLINEDCABLESBASEDONAREFERENCECONFIGURATIONTHEARCHITECTURALDESIGNEDFORM,HAVINGNODEFLECTIONANDZEROPRESTRESSINGIRDERSANDTOWERS,THEEQUILIBRIUMPOSITIONOFTHECABLESTAYEDBRIDGESUNDERDEADLOADISFIRSTDETERMINEDITERATIVELYEQUILIBRIUMITERATIONALTHOUGHTHISFIRSTDETERMINEDCONFIGURATIONSATISFIESTHEEQUILIBRIUMCONDITIONSANDTHEBOUNDARYCONDITIONS,THEREQUIREMENTSOFARCHITECTURALDESIGNARE,INGENERAL,NOTFULFILLEDSINCETHEBRIDGESPANISLARGEANDNOPRETENSIONFORCESEXISTININCLINEDCABLES,QUITELARGEDEFLECTIONSANDVERYLARGEBENDINGMOMENTSMAYAPPEARINTHEGIRDERSANDTOWERSANOTHERITERATIONTHENHASTOBECARRIEDOUTINORDERTOREDUCETHEDEFLECTIONANDTOSMOOTHTHEBENDINGMOMENTSINTHEGIRDERANDFINALLYTOFINDTHECORRECTINITIALSHAPESUCHANITERATIONPROCEDUREISNAMEDHERETHESHAPEITERATIONFORSHAPEITERATION,THEELEMENTAXIALFORCESDETERMINEDINTHEPREVIOUSSTEPWILLBETAKENASINITIALELEMENTFORCESFORTHENEXTITERATION,ANDANEWEQUILIBRIUMCONFIGURATIONUNDERTHEACTIONOFDEADLOADANDSUCHINITIALFORCESWILLBEDETERMINEDAGAINDURINGSHAPEITERATION,SEVERALCONTROLPOINTSNODESINTERSECTEDBYTHEGIRDERANDTHECABLEWILLBECHOSENFORCHECKINGTHECONVERGENCETOLERANCEINEACHSHAPEITERATIONTHERATIOOFTHEVERTICALDISPLACEMENTATCONTROLPOINTSTOTHEMAINSPANLENGTHWILLBECHECKED,IE,|SPANMIOITSCTRLDILEVERTCA|THESHAPEITERATIONWILLBEREPEATEDUNTILTHECONVERGENCETOLERANCE,SAY104,ISACHIEVEDWHENTHECONVERGENCETOLERANCEISREACHED,THECOMPUTATIONWILLSTOPANDTHEINITIALSHAPEOFTHECABLESTAYEDBRIDGESISFOUNDNUMERICALEXPERIMENTSSHOWTHATTHEITERATIONCONVERGESMONOTONOUSLYANDTHATALLTHREENONLINEARITIESHAVELESSINFLUENCEONTHEFINALGEOMETRYOFTHEINITIALSHAPEONLYTHECABLESAGEFFECTISSIGNIFICANTFORCABLEFORCESDETERMINEDINTHEINITIALSHAPEANALYSIS,ANDTHEBEAMCOLUMNANDLARGEDEFLECTIONEFFECTSBECOMEINSIGNIFICANTTHEINITIALANALYSISCANBEPERFORMEDINTWODIFFERENTWAYSALINEARANDANONLINEARCOMPUTATIONPROCEDURE1LINEARCOMPUTATIONPROCEDURETOFINDTHEEQUILIBRIUMCONFIGURATIONOFTHEBRIDGE,ALLNONLINEARITIESOFCABLESTAYEDBRIDGESARENEGLECTEDANDONLYTHELINEARELASTICCABLE,BEAMCOLUMNELEMENTSANDLINEARCONSTANTCOORDINATETRANSFORMATIONCOEFFICIENTSAREUSEDTHESHAPEITERATIONISCARRIEDOUTWITHOUTCONSIDERINGTHEEQUILIBRIUMITERATIONAREASONABLECONVERGENTINITIALSHAPEISFOUND,ANDALOTOFCOMPUTATIONEFFORTSCANBESAVED2NONLINEARCOMPUTATIONPROCEDUREALLNONLINEARITIESOFCABLESTAYEDBRIDGESARETAKENINTOCONSIDERATIONDURINGTHEWHOLECOMPUTATIONPROCESSTHENONLINEARCABLEELEMENTWITHSAGEFFECTANDTHEBEAMCOLUMNELEMENTINCLUDINGSTABILITYCOEFFICIENTSANDNONLINEARCOORDINATETRANSFORMATIONCOEFFICIENTSAREUSEDBOTHTHESHAPEITERATIONANDTHEEQUILIBRIUMITERATIONARECARRIEDOUTINTHENONLINEARCOMPUTATIONNEWTONRAPHSONMETHODISUTILIZEDHEREFOREQUILIBRIUMITERATION42STATICDEFLECTIONANALYSISBASEDONTHEDETERMINEDINITIALSHAPE,THENONLINEARSTATICDEFLECTIONANALYSISOFCABLESTAYEDBRIDGESUNDERLIVELOADCANBEPERFORMEDINCREMENTWISEORITERATIONWISEITISWELLKNOWNTHATTHELOADINCREMENTMETHODLEADSTOLARGENUMERICALERRORSTHEITERATIONMETHODWOULDBEPREFERREDFORTHENONLINEARCOMPUTATIONANDADESIREDCONVERGENCETOLERANCECANBEACHIEVEDNEWTONRAPHSONITERATIONPROCEDUREISEMPLOYEDFORNONLINEARANALYSISOFLARGEORCOMPLEXSTRUCTURALSYSTEMS,AFULLITERATIONPROCEDUREITERATIONPERFORMEDFORASINGLEFULLLOADSTEPWILLOFTENFAILANINCREMENTITERATIONPROCEDUREISHIGHLYRECOMMENDED,INWHICHTHELOADWILLBEINCREMENTED,ANDTHEITERATIONWILLBECARRIEDOUTINEACHLOADSTEPTHESTATICDEFLECTIONANALYSISOFTHECABLESTAYEDBRIDGEWILLSTARTFROMTHEINITIALSHAPEDETERMINEDBYTHESHAPEFINDINGPROCEDUREUSINGALINEARORNONLINEARCOMPUTATIONTHEALGORITHMOFTHESTATICDEFLECTIONANALYSISOFCABLESTAYEDBRIDGESISSUMMARIZEDINSECTION44243LINEARIZEDVIBRATIONANALYSISWHENASTRUCTURALSYSTEMISSTIFFENOUGHANDTHEEXTERNALEXCITATIONISNOTTOOINTENSIVE,THESYSTEMMAYVIBRATEWITHSMALLAMPLITUDEAROUNDACERTAINNONLINEARSTATICSTATE,WHERETHECHANGEOFTHENONLINEARSTATICSTATEINDUCEDBYTHEVIBRATIONISVERYSMALLANDNEGLIGIBLESUCHVIBRATIONWITHSMALLAMPLITUDEAROUNDACERTAINNONLINEARSTATICSTATEISTERMEDLINEARIZEDVIBRATIONTHELINEARIZEDVIBRATIONISDIFFERENTFROMTHELINEARVIBRATION,WHERETHESYSTEMVIBRATESWITHSMALLAMPLITUDEAROUNDALINEARSTATICSTATETHENONLINEARSTATICSTATEQACANBESTATICALLYDETERMINEDBYNONLINEARDEFLECTIONANALYSISAFTERDETERMININGQA,THESYSTEMMATRICESMAYBEESTABLISHEDWITHRESPECTTOSUCHANONLINEARSTATICSTATE,ANDTHELINEARIZEDSYSTEMEQUATIONHASTHEFORMASFOLLOWSMAQ”DAQ2KAQPTTAWHERETHESUPERSCRIPTADENOTESTHEQUANTITYCALCULATEDATTHENONLINEARSTATICSTATEQATHISEQUATIONREPRESENTSASETOFLINEARORDINARYDIFFERENTIALEQUATIONSOFSECONDORDERWITHCONSTANTCOEFFICIENTMATRICESMA,DAAND2KATHEEQUATIONCANBESOLVEDBYTHEMODALSUPERPOSITIONMETHOD,THEINTEGRALTRANSFORMATIONMETHODSORTHEDIRECTINTEGRATIONMETHODSWHENDAMPINGEFFECTANDLOADTERMSARENEGLECTED,THESYSTEMEQUATIONBECOMESMAQ”2KAQ0THISEQUATIONREPRESENTSTHENATURALVIBRATIONSOFANUNDAMPEDSYSTEMBASEDONTHENONLINEARSTATICSTATEQATHENATURALVIBRATIONFREQUENCIESANDMODESCANBEOBTAINEDFROMTHEABOVEEQUATIONBYUSINGEIGENSOLUTIONPROCEDURES,EG,SUBSPACEITERATIONMETHODSFORTHECABLESTAYEDBRIDGE,ITSINITIALSHAPEISTHENONLINEARSTATICSTATEQAWHENTHECABLESTAYEDBRIDGEVIBRATESWITHSMALLAMPLITUDEBASEDONTHEINITIALSHAPE,THENATURALFREQUENCIESANDMODESCANBEFOUNDBYSOLVINGTHEABOVEEQUATION44COMPUTATIONALGORITHMSOFCABLESTAYEDBRIDGEANALYSISTHEALGORITHMSFORSHAPEFINDINGCOMPUTATION,STATICDEFLECTIONANALYSISANDVIBRATIONANALYSISOFCABLESTAYEDBRIDGESAREBRIEFLYSUMMARIZEDINTHEFOLLOWING441INITIALSHAPEANALYSIS1INPUTOFTHEGEOMETRICANDPHYSICALDATAOFTHEBRIDGE2INPUTOFTHEDEADLOADOFGIRDERSANDTOWERSANDSUITABLYESTIMATEDINITIALFORCESINCABLESTAYS3FINDEQUILIBRIUMPOSITIONILINEARPROCEDURELINEARCABLEANDBEAMCOLUMNSTIFFNESSELEMENTSAREUSEDLINEARCONSTANTCOORDINATETRANSFORMATIONCOEFFICIENTSAJAREUSEDESTABLISHTHELINEARSYSTEMSTIFFNESSMATRIXKBYASSEMBLINGELEMENTSTIFFNESSMATRICESSOLVETHELINEARSYSTEMEQUATIONFORQEQUILIBRIUMPOSITIONNOEQUILIBRIUMITERATIONISCARRIEDOUTIINONLINEARPROCEDURENONLINEARCABLESWITHSAGEFFECTANDBEAMCOLUMNELEMENTSAREUSEDNONLINEARCOORDINATETRANSFORMATIONCOEFFICIENTSAJAJ,AREUSEDESTABLISHTHETANGENTSYSTEMSTIFFNESSMATRIX2KSOLVETHEINCREMENTALSYSTEMEQUATIONFORQEQUILIBRIUMITERATIONISPERFORMEDBYUSINGTHENEWTONRAPHSONMETHOD4SHAPEITERATION5OUTPUTOFTHEINITIALSHAPEINCLUDINGGEOMETRICSHAPEANDELEMENTFORCES6FORLINEARSTATICDEFLECTIONANALYSIS,ONLYLINEARSTIFFNESSELEMENTSANDTRANSFORMATIONCOEFFICIENTSAREUSEDANDNOEQUILIBRIUMITERATIONISCARRIEDOUT443VIBRATIONANALYSIS1INPUTOFTHEGEOMETRICANDPHYSICALDATAOFTHEBRIDGE2INPUTOFTHEINITIALSHAPEDATAINCLUDINGINITIALGEOMETRYANDINITIALELEMENTFORCES3SETUPTHELINEARIZEDSYSTEMEQUATIONOFFREEVIBRATIONSBASEDONTHEINITIALSHAPE4FINDVIBRATIONFREQUENCIESANDMODESBYSUBSPACEITERATIONMETHODS,SUCHASTHERUTISHAUSERMETHOD5ESTIMATIONOFTHETRIALINITIALCABLEFORCESINTHERECENTSTUDYOFWANGANDLIN,THESHAPEFINDINGOFSMALLCABLESTAYEDBRIDGESHASBEENPERFORMEDBYUSINGARBITRARYSMALLORLARGETRIALINITIALCABLEFORCESTHERETHEITERATIONCONVERGESMONOTONOUSLY,ANDTHECONVERGENTSOLUTIONSHAVESIMILARRESULTS,IFDIFFERENTTRIALVALUESOFINITIALCABLEFORCESAREUSEDHOWEVERFORLARGECABLESTAYEDBRIDGES,SHAPEFINDINGCOMPUTATIONSBECOMEMOREDIFFICULTTOCONVERGEINNONLINEARANALYSIS,THENEWTONTYPEITERATIVECOMPUTATIONCANCONVERGE,ONLYWHENTHEESTIMATEDVALUESOFTHESOLUTIONISLOCATEINTHENEIGHBORHOODOFTHETRUEVALUESDIFFICULTIESINCONVERGENCEMAYAPPEAR,WHENTHESHAPEFINDINGANALYSISOFCABLESTAYEDBRIDGESISSTARTEDBYUSEOFARBITRARYSMALLINITIALCABLEFORCESSUGGESTEDINTHEPAPERSOFWANGETALTHEREFORE,TOESTIMATEASUITABLETRIALINITIALCABLEFORCESINORDERTOGETACONVERGENTSOLUTIONBECOMESIMPORTANTFORTHESHAPEFINDINGANALYSISINTHEFOLLOWING,SEVERALMETHODSTOESTIMATETRIALINITIALCABLEFORCESWILLBEDISCUSSED51BALANCEOFVERTICALLOADS52ZEROMOMENTCONTROL53ZERODISPLACEMENTCONTROL54CONCEPTOFCABLEEQUIVALENTMODULUSRATIO55CONSIDERATIONOFTHEUNSYMMETRYIFTHEESTIMATEDINITIALCABLEFORCESAREDETERMINEDINDEPENDENTLYFOREACHCABLESTAYBYTHEMETHODSMENTIONEDABOVE,THEREMAYEXISTUNBALANCEDHORIZONTALFORCESONTHETOWERINUNSYMMETRICCABLESTAYEDBRIDGESFORSYMMETRICARRANGEMENTSOFTHECABLESTAYSONTHECENTRALMAINSPANANDTHESIDESPANWITHRESPECTTOTHETOWER,THERESULTANTOFTHEHORIZONTALCOMPONENTSOFTHECABLESTAYSACTINGONTHETOWERISZERO,IE,NOUNBALANCEDHORIZONTALFORCESEXISTONTHETOWERFORUNSYMMETRICCABLESTAYEDBRIDGES,INWHICHTHEARRANGEMENTOFCABLESTAYSONTHECENTRALMAINSPANANDTHESIDESPANISUNSYMMETRIC,ANDIFTHEFORCESOFCABLESTAYSONTHECENTRALSPANANDTHESIDESPANAREDETERMINEDINDEPENDENTLY,EVIDENTLYUNBALANCEDHORIZONTALFORCESWILLEXISTONTHETOWERANDWILLINDUCELARGEBENDINGMOMENTSANDDEFLECTIONSTHEREINTHEREFORE,FORUNSYMMETRICCABLESTAYEDBRIDGES,THISPROBLEMCANBEOVERCOMEASFOLLOWSTHEFORCEOFCABLESTAYSONTHECENTRALMAINSPANTIMCANBEDETERMINEDBYTHEMETHODSMENTIONEDABOVEINDEPENDENTLY,WHERETHESUPERSCRIPTMDENOTESTHEMAINSPAN,THESUBSCRIPTIDENOTESTHEITHCABLESTAYTHENTHEFORCEOFCABLESTAYSONTHESIDESPANISFOUNDBYTAKINGTHEEQUILIBRIUMOFHORIZONTALFORCECOMPONENTSATTHENODEONTHETOWERATTACHEDWITHTHECABLESTAYS,IE,TIMCOSITISCOSI,ANDTISTIMCOSI/COSI,WHEREIISTHEANGLEBETWEENTHEITHCABLESTAYANDTHEGIRDERONTHEMAINSPAN,ANDI,ANGLEBETWEENTHEITHCABLESTAYANDTHEGIRDERONTHESIDESPAN6EXAMPLESINTHISSTUDY,TWODIFFERENTTYPESOFSMALLCABLESTAYEDBRIDGESARETAKENFROMLITERATURE,ANDTHEIRINITIALSHAPESWILLBEDETERMINEDBYTHEPREVIOUSLYDESCRIBEDSHAPEFINDINGMETHODUSINGLINEARANDNONLINEARPROCEDURESFINALLY,AHIGHLYREDUNDANTSTIFFCABLESTAYEDBRIDGEWILLBEEXAMINEDACONVERGENCETOLERANCEE104ISUSEDFORBOTHTHEEQUILIBRIUMITERATIONANDTHESHAPEITERATIONTHEMAXIMUMNUMBEROFITERATIONCYCLESISSETAS20THECOMPUTATIONISCONSIDEREDASNOTCONVERGENT,IFTHENUMBEROFTHEITERATIONCYCLESEXCEEDS20THEINITIALSHAPESOFTHEFOLLOWINGTWOSMALLCABLESTAYEDBRIDGESINSECTIONS61AND62AREFIRSTDETERMINEDBYUSINGARBITRARYTRIALINITIALCABLEFORCESTHEITERATIONCONVERGESMONOTONOUSLYINTHESETWOEXAMPLESTHEIRCONVERGENTINITIALSHAPESCANBEOBTAINEDEASILYWITHOUTDIFFICULTIESTHEREAREONLYSMALLDIFFERENCESBETWEENTHEINITIALSHAPESDETERMINEDBYTHELINEARANDTHENONLINEARCOMPUTATIONCONVERGENTSOLUTIONSOFFERSIMILARRESULTS,ANDTHEYAREINDEPENDENTOFTHETRIALINITIALCABLEFORCES7CONCLUSIONTHETWOLOOPITERATIONWITHLINEARANDNONLINEARCOMPUTATIONISESTABLISHEDFORFINDINGTHEINITIALSHAPESOFCABLESTAYEDBRIDGESTHISMETHODCANACHIEVETHEARCHITECTURALLYDESIGNEDFORMHAVINGUNIFORMPRESTRESSDISTRIBUTION,ANDSATISFIESALLEQUILIBRIUMANDBOUNDARYCONDITIONSTHEDETERMINATIONOFTHEINITIALSHAPEISTHEMOSTIMPORTANTWORKINTHEANALYSISOFCABLESTAYEDBRIDGESONLYWITHACORRECTINITIALSHAPE,AMEANINGFULANDACCURATEDEFLECTIONAND/ORVIBRATIONANALYSISCANBEACHIEVEDBASEDONNUMERICALEXPERIMENTSINTHESTUDY,SOMECONCLUSIONSARESUMMARIZEDASFOLLOWS1NOGREATDIFFICULTIESAPPEARINCONVERGENCEOFTHESHAPEFINDINGOFSMALLCABLESTAYEDBRIDGES,WHEREARBITRARYINITIALTRIALCABLEFORCESCANBEUSEDTOSTARTTHECOMPUTATIONHOWEVERFORLARGESCALECABLESTAYEDBRIDGES,SERIOUSDIFFICULTIESOCCURREDINCONVERGENCEOFITERATIONS2DIFFICULTIESOFTENOCCURINCONVERGENCEOFTHESHAPEFINDINGCOMPUTATIONOFLARGECABLESTAYEDBRIDGE,WHENTRIALINITIALCABLEFORCESAREGIVENBYTHEMETHODSOFBALANCEOFVERTICALLOADS,ZEROMOMENTCONTROLANDZERODISPLACEMENTCONTROL3ACONVERGEDINITIALSHAPECANBEFOUNDRAPIDLYBYTHETWOLOOPITERATIONMETHOD,IFTHECABLESTRESSCORRESPONDINGTOABOUT80OFEEQEVALUEISUSEDFORTHETRIALINITIALFORCEOFEACHCABLESTAYINTHEMAINSPAN,ANDTHETRIALFORCEOFTHECABLESINSIDESPANSISDETERMINEDBYTAKINGHORIZONTALEQUILIBRIUMOFTHECABLEFORCESACTINGONTHETOWER4THEREAREONLYSMALLDIFFERENCESINGEOMETRYANDPRESTRESSDISTRIBUTIONBETWEENTHERESULTSOFINITIALSHAPESDETERMINEDBYLINEARANDNONLINEARPROCEDURES5THESHAPEFINDINGUSINGLINEARCOMPUTATIONOFFERSAREASONABLEINITIALSHAPEANDSAVESALOTOFCOMPUTATIONEFFORTS,SOTHATITISHIGHLYRECOMMENDEDFROMTHEPOINTOFVIEWOFENGINEERINGPRACTICES6INSMALLCABLESTAYEDBRIDGES,THEREAREONLYSMALLDIFFERENCEINTHENATURALFREQUENCIESBASEDONINITIALSHAPESDETERMINEDBYLINEARANDNONLINEARCOMPUTATIONPROCEDURES,ANDTHEMODESHAPESARETHESAMEINBOTHCASES7SIGNIFICANTDIFFERENCESINTHEFUNDAMENTALFREQUENCYANDINTHEMODESHAPESOFHIGHLYREDUNDANTSTIFFCABLESTAYEDBRIDGESISSHOWNINTHESTUDYONLYTHEVIBRATIONMODESDETERMINEDBYTHEINITIALSHAPEBASEDONNONLINEARPROCEDURESEXHIBITTHENONLINEARCABLESAGANDBEAMCOLUMNEFFECTSOFCABLESTAYEDBRIDGES,EG,THEFIRSTANDTHIRDMODESOFTHEBRIDGEAREDOMINATEDBYTHETRANSVERSALMOTIONOFTHETOWER,NOTOFTHEGIRDERTHEDIFFERENCEOFTHEFUNDAMENTALFREQUENCYINBOTHCASESISABOUT12HENCEACORRECTANALYSISOFVIBRATIONFREQUENCIESANDMODESOFCABLESTAYEDBRIDGESCANBEOBTAINEDONLYWHENTHECORRECTINITIALSHAPEISDETERMINEDBYNONLINEARCOMPUTATION,NOTBYTHELINEARCOMPUTATION高度超静定斜拉桥的非线性分析研究1摘要一个拉索高度超静定的斜拉桥的非线性分析比较在研究中被实行。包括桥的几何学和预应力分配的初始形状是使用双重迭代的方法决定的,也就是,一个平衡迭代和一个形状迭代。对于开始的形状分析,一个线性和一个非线性计算程序被建立。以前斜拉桥所有非线性被忽视,而且形状迭代是不考虑平衡而实行的。后来桥的所有非线性被考虑到,而且平衡和形状的重复都实行了。基于收敛于一点的起始形状由不同的程序决定,自振频率和震动模态也被详细地研究。数字的结果表明收敛于一点的起始形状能由二个环的重复方法快速地得到,合理的起始形状能由线性的计算程序决定,而且那样许多计算工作将被节省。在由线性的和非线性计算程序决定的结果之间的几何学和预应力分配中只有很小的不同。然而,对于自振频率和震动模态的分析来说,基本的频率和震动模态将会有显著的不同,而且斜拉桥反应的非线性只出现在由非线性计算得到的初始形状的基础之上的模态中。2序言在过去的三十年中斜拉桥分析和建筑中取得了飞速的进步。进步主要是由于计算机技术的领域发展,高强度的钢拉索,正交异性钢板和建筑技术产生的。既然第一座现代的斜拉桥1955年在瑞典被建造,他们的名声在全世界得到快速地增长。因为它的直立美学的外观,经济原因和便于直立,斜拉桥被认为是跨径范围从200M到大约1000M的最合适的建筑类型。世界上现在最长的斜拉桥是日本的横跨岛海、连接本州四国的多多罗桥。多多罗斜拉桥在1999年5月1日被开通,它有890M的一个中央跨径和1480M的总跨度。一座斜拉桥由三个主要的成分所组成,也就是主梁、索塔和斜拉索。主梁在沿纵向方向由拉索弹性支撑以使主梁能跨越一个更长的距离而不需要中间桥墩。主梁的永久荷载和车辆荷载通过拉索传递给索塔。很大的拉力存在于拉索中减小了索塔中大部分和梁的一部分压力。斜拉桥的非线性的来源主要地包括拉索下垂,梁柱的偏压和大的偏转效应。因为在未施加活载前拉索中存在高度预应力,斜拉桥的初始形状和预应力由每条拉索决定。他们不能够被独立地看成是传统的钢或者是高强混凝土桥。因此开始的形状必须被在桥的分析之前正确的决定。只有基于正确的起始形状才能得到一个正确的偏转和震动分析。这篇论文的目的要提供一个高度冗余的斜拉桥的非线性分析的比较,桥的开始形状将会由线性和非线性计算程序迭代来决定。基于开始的形状计算,桥的震动频率和模态被确定。3系统方程31一般的系统方程当只有非线性在刚体中被考虑到,而且系统的衰减矩阵被认为是恒定的时候,在非线性动力学中结构的一个有限元模型才能从虚工作原则中得到,如下KJBJSJAJMQ”DQ32线性化系统方程为了要不断的解决更大的偏转问题,线性化系统的方程必需用到。通过泰勒的一般方程的扩展的最早的条目,对于一个小的时间(或荷载)间隔的线性化的方程便得到,如下MQ”DQ2KQPUP33在静力学中的线性化系统方程在非线性静力学中,线性化系统方程变成2KQPUP4非线性分析41起始形状分析斜拉桥的初始形状提供了几何学的结构和桥在主梁和索塔的恒载、斜拉索的拉力作用下的预应力分配。作用的平衡条件,指定的边界条件和建筑的设计需求应该被满足。因为计算的形状,主梁和索塔的永久荷载必须被考虑,拉索的自重被疏

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论