线性代数课后题答案第五版全_第1页
线性代数课后题答案第五版全_第2页
线性代数课后题答案第五版全_第3页
线性代数课后题答案第五版全_第4页
线性代数课后题答案第五版全_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1第一章行列式1第二章矩阵及其运算13第三章矩阵的初等变换与线性方程组30第四章向量组的线性相关性46第五章相似矩阵及二次型73第一章行列式1利用对角线法则计算下列三阶行列式1381141102解38114110224301111801321814124816442BACACBCBA解BACACBCBAACBBACCBABBBAAACCC3ABCA3B3C33222111CBACBA解222111CBACBABC2CA2AB2AC2BA2CB2ABBCCA4YXYXXYXYYXYX2解YXYXXYXYYXYXXXYYYXXYXYYXY3XY3X33XYXYY33X2YX3Y3X32X3Y32按自然数从小到大为标准次序求下列各排列的逆序数11234解逆序数为024132解逆序数为44143423233421解逆序数为532314241,2142413解逆序数为32141435132N1242N解逆序数为21NN321个52542个7274763个2N122N142N162N12N2N1个6132N12N2N22解逆序数为NN1321个52542个2N122N142N162N12N2N1个421个62642个2N22N42N62N2N2N1个3写出四阶行列式中含有因子A11A23的项解含因子A11A23的项的一般形式为1TA11A23A3RA4S其中RS是2和4构成的排列这种排列共有两个即24和423所以含因子A11A23的项分别是1TA11A23A32A4411A11A23A32A44A11A23A32A441TA11A23A34A4212A11A23A34A42A11A23A34A424计算下列各行列式171100251020214214解71100251020214214010014231020211021473234CCCC34114310221101414310221101401417172001099323211CCCC22605232112131412解2605232112131412260503212213041224CC041203212213041224RR0000003212213041214RR3EFCFBFDECDBDAEACAB解EFCFBFDECDBDAEACABECBECBECBADFABCDEFADFBCE411111111144DCBA100110011001解DCBA100110011001DCBAABARR10011001101021DCAAB101101111201011123CDCADAABDCCCDADAB1111123ABCDABCDAD15证明11112222BBAABABAAB3证明1112222BBAABABA00122222221213ABABAABAABACCCCABABABAAB2212221321ABAABABAB32YXZXZYZYXBABZAYBYAXBXAZBYAXBXAZBZAYBXAZBZAYBYAX33证明BZAYBYAXBXAZBYAXBXAZBZAYBXAZBZAYBYAXBZAYBYAXXBYAXBXAZZBXAZBZAYYBBZAYBYAXZBYAXBXAZYBXAZBZAYXA5BZAYYXBYAXXZBXAZZYBYBYAXZXBXAZYZBZAYXA22ZYXYXZXZYBYXZXZYZYXA33YXZXZYZYXBYXZXZYZYXA33YXZXZYZYXBA33303213213213212222222222222222DDDDCCCCBBBBAAAA证明2222222222222222321321321321DDDDCCCCBBBBAAAAC4C3C3C2C2C1得5232125232125232125232122222DDDDCCCCBBBBAAAAC4C3C3C2得022122212221222122222DDCCBBAA4444422221111DCBADCBADCBAABACADBCBDCDABCD证明6444422221111DCBADCBADCBA0001111222222222ADDACCABBADDACCABBADACAB111222ADDACCABBDCBADACAB00111ABDBDDABCBCCBDBCADACAB11ABDDABCCBDBCADACABABACADBCBDCDABCD51221100000100001AXAAAAXXXNNNXNA1XN1AN1XAN证明用数学归纳法证明当N2时2121221AXAXAXAXD命题成立假设对于N1阶行列式命题成立即DN1XN1A1XN2AN2XAN1则DN按第一列展开有1110010001111XXAXDDNNNNXDN1ANXNA1XN1AN1XAN因此对于N阶行列式命题成立6设N阶行列式DDETAIJ,把D上下翻转、或逆时针旋转90、或依副对角线翻转依次得7NNNNAAAAD1111111112NNNNAAAAD11113AAAADNNNN证明DDDNN21211D3D证明因为DDETAIJ所以NNNNNNNNNNAAAAAAAAAAD2211111111111111331122111121NNNNNNNNAAAAAAAADDNNNN21122111同理可证NNNNNNAAAAD11111212DDNNTNN212111DDDDDNNNNNNNN12121221311117计算下列各行列式DK为K阶行列式1AADN11,其中对角线上元素都是A未写出的元素都是0解AAAAADN00010000000000001000按第N行展开8111000000000000100001NNNAAA1121NNNAAANNNNNAAA22111ANAN2AN2A212XAAAXAAAXDN解将第一行乘1分别加到其余各行得AXXAAXXAAXXAAAAXDN0000000再将各列都加到第一列上得AXAXAXAAAANXDN00000000001XN1AXAN131111111111NAAANAAANAAADNNNNNNN解根据第6题结果有NNNNNNNNNNAAANAAANAAAD1111111111211此行列式为范德蒙德行列式911211111JINNNNJAIAD11211JINNNJI112112111JINNNNNJI11JINJI4NNNNNDCDCBABAD11112解NNNNNDCDCBABAD11112按第1行展开NNNNNNDDCDCBABAA000011111111100011111111112CDCDCBABABNNNNNNN再按最后一行展开得递推公式D2NANDND2N2BNCND2N2即D2NANDNBNCND2N2于是NIIIIINDCBDAD222而111111112CBDADCBAD所以NIIIIINCBDAD125DDETAIJ其中AIJ|IJ|解AIJ|IJ|0432140123310122210113210DETNNNNNNNNADIJN04321111111111111111111112132NNNNRRRR15242321022210022100021000011213NNNNNCCCC1N1N12N2116NNAAAD11111111121,其中A1A2AN0解NNAAAD11111111121NNNNAAAAAAAAACCCC1000010001000100010000113322121321111312112111000011000001100001100001NNNAAAAAAAANIINNAAAAAAAA1111131211211000001000000100000100000111121NIINAAAA8用克莱姆法则解下列方程组101123253224254321432143214321XXXXXXXXXXXXXXXX12解因为14211213513241211111D142112105132412211151D284112035122412111512D426110135232422115113D14202132132212151114D所以111DDX222DDX333DDX144DDX2150650650651655454343232121XXXXXXXXXXXXX解因为6655100065100065100065100065D150751001651000651000650000611D114551010651000650000601000152D70351100650000601000051001653D39551000601000051000651010654D1321211000051000651000651100655D所以66515071X66511452X6657033X6653954X6652124X9问取何值时齐次线性方程组0200321321321XXXXXXXXX有非零解解系数行列式为1211111D令D0得0或1于是当0或1时该齐次线性方程组有非零解10问取何值时齐次线性方程组010320421321321321XXXXXXXXX有非零解解系数行列式为101112431111132421D13341213132123令D0得02或3于是当02或3时该齐次线性方程组有非零解第二章矩阵及其运算1已知线性变换143213321232113235322YYYXYYYXYYYX求从变量X1X2X3到变量Y1Y2Y3的线性变换解由已知221321323513122YYYXXX故3211221323513122XXXYYY321423736947YYY321332123211423736947XXXYXXXYXXXY2已知两个线性变换32133212311542322YYYXYYYXYYX32331221133ZZYZZYZZY求从Z1Z2Z3到X1X2X3的线性变换解由已知221321514232102YYYXXX321310102013514232102ZZZ321161109412316ZZZ所以有3213321232111610941236ZZZXZZZXZZZX3设111111111A150421321B求3AB2A及ATB15解1111111112150421321111111111323AAB2294201722213211111111120926508503092650850150421321111111111BAT4计算下列乘积1127075321134解127075321134102775132271112374496352123321解12332113223110321312解2131223132111221263214242041312101314311041216解2041312101314311041265208765321332313232212131211321XXXAAAAAAAAAXXX解321332313232212131211321XXXAAAAAAAAAXXXA11X1A12X2A13X3A12X1A22X2A23X3A13X1A23X2A33X3321XXX322331132112233322222111222XXAXXAXXAXAXAXA5设3121A2101B问1ABBA吗解ABBA因为6443AB8321BA所以ABBA2AB2A22ABB2吗解AB2A22ABB2因为5222BA522252222BA2914148但43011288611483222BABA27151610所以AB2A22ABB23ABABA2B2吗解ABABA2B217因为5222BA1020BA906010205222BABA而718243011148322BA故ABABA2B26举反列说明下列命题是错误的1若A20则A0解取0010A则A20但A02若A2A则A0或AE解取0011A则A2A但A0且AE3若AXAY且A0则XY解取0001A1111X1011Y则AXAY且A0但XY7设101A求A2A3AK解12011011012A1301101120123AAA101KAK8设001001A求AK解首先观察180010010010012A2220020123232323003033AAA43423434004064AAA545345450050105AAAKAKKKKKKKKKK00021121用数学归纳法证明当K2时显然成立假设K时成立,则K1时,001001000211211KKKKKKKKKKKKAAA1111110010211KKKKKKKKKK由数学归纳法原理知19KKKKKKKKKKKA000211219设AB为N阶矩阵,且A为对称矩阵,证明BTAB也是对称矩阵证明因为ATA所以BTABTBTBTATBTATBBTAB从而BTAB是对称矩阵10设AB都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是ABBA证明充分性因为ATABTB且ABBA所以ABTBATATBTAB即AB是对称矩阵必要性因为ATABTB且ABTAB所以ABABTBTATBA11求下列矩阵的逆矩阵15221解5221A|A|1故A1存在因为122522122111AAAAA故|11AAA12252COSSINSINCOS解COSSINSINCOSA|A|10故A1存在因为COSSINSINCOS22122111AAAAA20所以|11AAACOSSINSINCOS3145243121解145243121A|A|20故A1存在因为214321613024332313322212312111AAAAAAAAAA所以|11AAA17162132130124NAAA0021A1A2AN0解NAAAA0021由对角矩阵的性质知NAAAA1001121112解下列矩阵方程112643152X解126431521X1264215380232212234311111012112X解1111012112234311X03323210123431131325381223101311022141X解11110210132141X21011013114212121010366121041114021102341010100001100001010X解11010100001021102341100001010X01010000102110234110000101020143101213利用逆矩阵解下列线性方程组13532522132321321321XXXXXXXXX22解方程组可表示为321153522321321XXX故0013211535223211321XXX从而有001321XXX205231322321321321XXXXXXXXX解方程组可表示为012523312111321XXX故3050125233121111321XXX故有305321XXX14设AKOK为正整数证明EA1EAA2AK1证明因为AKO所以EAKE又因为EAKEAEAA2AK1所以EAEAA2AK1E由定理2推论知EA可逆且EA1EAA2AK1证明一方面有EEA1EA另一方面由AKO有EEAAA2A2AK1AK1AK23EAA2AK1EA故EA1EAEAA2AK1EA两端同时右乘EA1就有EA1EAEAA2AK115设方阵A满足A2A2EO证明A及A2E都可逆并求A1及A2E1证明由A2A2EO得A2A2E即AAE2E或EEAA21由定理2推论知A可逆且211EAA由A2A2EO得A2A6E4E即A2EA3E4E或EAEEA3412由定理2推论知A2E可逆且34121AEEA证明由A2A2EO得A2A2E两端同时取行列式得|A2A|2即|A|AE|2故|A|0所以A可逆而A2EA2|A2E|A2|A|20故A2E也可逆由A2A2EOAAE2EA1AAE2A1E211EAA又由A2A2EOA2EA3A2E4EA2EA3E4E所以A2E1A2EA3E4A2E134121AEEA2416设A为3阶矩阵21|A求|2A15A|解因为|11AAA所以|521|52|111AAAAA|2521|11AA|2A1|23|A1|8|A|1821617设矩阵A可逆证明其伴随阵A也可逆且A1A1证明由|11AAA得A|A|A1所以当A可逆时有|A|A|N|A1|A|N10从而A也可逆因为A|A|A1所以A1|A|1A又|1111AAAAA所以A1|A|1A|A|1|A|A1A118设N阶矩阵A的伴随矩阵为A证明1若|A|0则|A|02|A|A|N1证明1用反证法证明假设|A|0则有AA1E由此得AAAA1|A|EA1O所以AO这与|A|0矛盾,故当|A|0时有|A|02由于|11AAA则AA|A|E取行列式得到|A|A|A|N若|A|0则|A|A|N1若|A|0由1知|A|0此时命题也成立因此|A|A|N119设321011330AABA2B求B25解由ABA2E可得A2EBA故321011330121011332211AEAB01132133020设101020101A且ABEA2B求B解由ABEA2B得AEBA2E即AEBAEAE因为01001010100|EA所以AE可逆从而201030102EAB21设ADIAG121ABA2BA8E求B解由ABA2BA8E得A2EBA8EB8A2E1A18AA2E18AA2A18|A|E2A182E2A14EA14DIAG212121,1,21DIAG42DIAG12122已知矩阵A的伴随阵8030010100100001A且ABA1BA13E求B解由|A|A|38得|A|2由ABA1BA13E得ABB3AB3AE1A3AEA11A261126213AEAE103006060060000660300101001000016123设P1AP其中1141P2001求A11解由P1AP得APP1所以A11AP11P1|P|31141P1141311P而11111120012001故31313431200111411111A6846832732273124设APP其中111201111P511求AA85E6AA2解85E62DIAG1158DIAG555DIAG6630DIAG1125DIAG1158DIAG120012DIAG100APP1|1PPP1213032220000000011112011112111111111425设矩阵A、B及AB都可逆证明A1B1也可逆并求其逆阵证明因为A1ABB1B1A1A1B127而A1ABB1是三个可逆矩阵的乘积所以A1ABB1可逆即A1B1可逆A1B11A1ABB11BAB1A26计算30003200121013013000120010100121解设10211A30122A12131B30322B则2121BOBEAOEA222111BAOBBAA而4225303212131021211BBA90343032301222BA所以2121BOBEAOEA222111BAOBBAA9000340042102521即3000320012101301300012001010012190340410252127取1001DCBA验证|DCBADCBA解41001200210100101002000021010010110100101DCBA而01111|DCBA故|DCBADCBA2828设22023443OOA求|A8|及A4解令34431A22022A则21AOOAA故8218AOOAA8281AOOA1682818281810|AAAAA464444241422025005OOAOOAA29设N阶矩阵A及S阶矩阵B都可逆求11OBAO解设43211CCCCOBAO则OBAO4321CCCCSNEOOEBCBCACAC2143由此得SNEBCOBCOACEAC2143121413BCOCOCAC所以OABOOBAO11121BCOA解设43211DDDDBCOA则29SNEOOEBDCDBDCDADADDDDDBCOA4231214321由此得SNEBDCDOBDCDOADEAD42312114113211BDCABDODAD所以11111BCABOABCOA30求下列矩阵的逆阵12500380000120025解设1225A2538B则5221122511A8532253811B于是850032000052002125003800001200251111BABA24121031200210001解设2101A4103B2112C则1111114121031200210001BCABOABCOA30411212458103161210021210001第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵1340313021201解340313021201下一步R22R1R33R1020031001201下一步R21R32010031001201下一步R3R2300031001201下一步R33100031001201下一步R23R3100001001201下一步R12R2R1R3311000010000012174034301320解174034301320下一步R223R1R32R1310031001320下一步R3R2R13R20000310010020下一步R12000031005010312433023221453334311解12433023221453334311下一步R23R1R32R1R43R11010500663008840034311下一步R24R33R4522100221002210034311下一步R13R2R3R2R4R23200000000002210032011434732038234202173132解34732038234202173132下一步R12R2R33R2R42R21187701298804202111110下一步R22R1R38R1R47R141000410002020111110下一步R1R2R21R4R300000410001111020201下一步R2R3000004100030110202012设987654321100010101100001010A求A解100001010是初等矩阵E12其逆矩阵就是其本身33100010101是初等矩阵E121其逆矩阵是E121100010101100010101987654321100001010A2872212541000101019873216543试利用矩阵的初等变换求下列方阵的逆矩阵1323513123解1000100013235131231010110012004101231012002110102/102/30232/102/1102110102/922/70032/102/11002110102/33/26/7001故逆矩阵为210212112332672121023211220102334解100001000010000112102321122010230010030110000100122059401210232120104301100001001200110012102321106124301100001001000110012102321106126311101022111000010000100021106126311101042111000010000100001故逆矩阵为1061263111010421141设113122214A132231B求X使AXB解因为132231113122214,BA412315210100010001R35所以4123152101BAX2设433312120A132321B求X使XAB解考虑ATXTBT因为134313231221320,TTBA411007101042001R所以4171421TTTBAX从而4741121BAX5设101110011AAX2XA求X解原方程化为A2EXA因为101101110110011011,2AEA011100101010110001所以01110111021AEAX6在秩是R的矩阵中,有没有等于0的R1阶子式有没有等于0的R阶子式解在秩是R的矩阵中可能存在等于0的R1阶子式也可能存在等于0的R阶子式36例如010000100001ARA30000是等于0的2阶子式010001000是等于0的3阶子式7从矩阵A中划去一行得到矩阵B问AB的秩的关系怎样解RARB这是因为B的非零子式必是A的非零子式故A的秩不会小于B的秩8求作一个秩是4的方阵它的两个行向量是1010011000解用已知向量容易构成一个有4个非零行的5阶下三角矩阵0000001000001010001100001此矩阵的秩为4其第2行和第3行是已知向量9求下列矩阵的秩并求一个最高阶非零子式1443112112013解443112112013下一步R1R2443120131211下一步R23R1R3R1564056401211下一步R3R237000056401211矩阵的2秩为41113是一个最高阶非零子式2815073131213123解815073131223123下一步R1R2R22R1R37R115273321059117014431下一步R33R20000059117014431矩阵的秩是271223是一个最高阶非零子式302301085235703273812解02301085235703273812下一步R12R4R22R4R33R402301024205363071210下一步R23R1R32R10230114000016000071210下一步R216R4R316R2380230100000100007121000000100007121002301矩阵的秩为3070023085570是一个最高阶非零子式10设A、B都是MN矩阵证明AB的充分必要条件是RARB证明根据定理3必要性是成立的充分性设RARB则A与B的标准形是相同的设A与B的标准形为D则有ADDB由等价关系的传递性有AB11设32321321KKKA问K为何值可使1RA12RA23RA3解32321321KKKA210011011KKKKKR1当K1时RA12当K2且K1时RA23当K1且K2时RA312求解下列齐次线性方程组102220202432143214321XXXXXXXXXXXX解对系数矩阵A进行初等行变换有39A2122111212113/410013100101于是4443424

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论