M30水泥砂浆配合比是多少_第1页
M30水泥砂浆配合比是多少_第2页
M30水泥砂浆配合比是多少_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.M30水泥砂浆配合比是多少?水泥:砂:外加剂:水=1:2.7:0.018:0.38锚杆钻孔灌浆,用M30水泥砂浆抗浮锚杆施工中,通常要求灌注砂浆强度不低于m30,但是实验室中,最高的水泥砂浆配合比才m20,怎么解决啊?通常设计会有个要求, 一般是水灰比0.380.50,砂灰比1.01.2,我觉得水灰比的要求是比较合适的,但砂灰比有些偏小,这样水泥的用量会比较大。从节约的角度出发,当然同时还要满足强度和工作性要求,提高砂灰比至2.0都是可以的。也就是说配合比应在:0.450.50:1:2.0就可以,如果要严格按设计的要求那就:0.380.50:1:1.2。注明:不加减水剂,减水剂在此处使用完全

2、无必要。M30砂浆配合比的问题 我在施工中碰见了要求用M30的砂浆配合比,而且给出了比例为1:1:0.45不要求用减水剂,水泥现在使用的42.5水泥,用于锚杆填充用的。在网上找了好多的帖子也都反映相同的问题。有没有谁有具体的设计过程或者具体的设计思路供参考一下啊!咨询了老试验工程师,他给出的大致想法是假设砂浆每立方总质量为2200kg,在用总2200除以2.45得898水泥,砂则为897,水为404。大致是这个意思。不知道大家都还有什么想法一起说出来,共同讨论一下可以参考一下,配合比一般是1:1-1:2之间比较合理,之前用过1:3.3的砂浆根本不能用,老爆管是水泥砂浆,是直径10cm的孔,灌注

3、用的,锚杆直径是28mm.我现在有个配合比,42.5的水泥:中砂:水=606kg:1m3砂:0.3m3水,我想增加水泥,水也增加一点,不知是否合理?不是用于梁的压浆V?|zC?? EV. 有水泥砂浆也有水泥净浆两种两种都比较常见如桥梁预应力管道注浆就用净浆,隧道砂浆锚杆就用的砂浆注浆的加砂主要是降低造价和防开裂为保证强度和流动度可加减水剂我有做过,结构部位是锚杆的,大概控制在水泥:砂=1:2左右砂浆一般很难压进去,设计上一般是水泥:砂=1:1,水灰比为0.45,砂采用特细砂,可加高效减水剂.我们这就是用于锚杆锚索注浆.但实际用净浆,资料做成砂浆就可以了.大家都知道压砂浆是

4、骗人的,因为根本压不进.V?|zC?? EV. 谁说的锚杆灌砂浆压不进去,纯粹的无稽之谈,你以为锚杆灌的砂浆就是普通砂浆的吗?它有流动性要求,你以为就是某某稠度就可以的吗,还说是搞工程的,不知道不要乱说!你也不要听图纸上说水泥:砂=1:1,或者说什么水灰比0.45之类的,他也只是建议,他告诉用什么砂什么水泥没有嘛,既然材料都不一样难道配合比会一样的吗?灌浆只要它的的稠度能满足施工要求就能灌进去,何来说砂浆不能灌进去之说!我们用了几个工地的砂浆灌浆完全没有问题,稠度1620S仅供大家参考,根据这个设计出满足要求的强度的砂浆就可以了!还有就是膨胀剂必须要加,减水剂视材料工作性

5、加与不加!还有谁说什么特细砂之类自己把规范好好看看,要求是小2.36mm的砂,免得让大家误会必须用特细砂一样!还有哪个谁说砂浆达不到M30,自己用脑袋好好想想,我用32.5级水泥配不出来就不能用42.5级水泥的吗,而且调整还可以调整水泥用量的撒?真不知道大家一天干什么去了,书上很多东西有说!类土质是花岗岩熔岩等火山岩风化而成,继承了原岩各向异性的土体物质或破碎岩体物质,其本身在未经搬运时具有岩体结构特征,包括硬岩的全风化、残积层,软岩的全风化、强风化及残积层。本论文主要依托海南东环城际铁路客运专线,分析沿线的花岗岩残积层等的物理、化学性质,探寻类土质影响工后沉降控制较为严重的物化指标。 作者主

6、要讨论了类土质自身的8个物化指标:矿物成分、含水量、塑性指数、颗粒级配、孔隙特征、压缩特性、结构特征以及风化程度,即类土质的组成、结构和力学方面的性质。其次整理沉降监测资料,分析上述指标与沉降控制间的相关关系,相关系数的大小则反映了对沉降控制影响的大小。最后,论文借助FLAC(3D)数值模拟软件以及理正岩土工程计算软件对显相关的前3个指标进行模拟,预测各阶段路基的沉降值,再以现场实际的沉降监测资料,对数值模拟的结果给予检算和验证。论文取得的研究成果主要有以下几个方面: (1)论文详细的阐述了类土质的成因、组成以及物理、化学性质:其形成主要是由于软硬岩自身不同物质成分的物理、水理、化学以及热学性

7、质等的差异,导致岩石在遭受风化作用时的胀缩、热分布、含水特征等不同,岩石内部出现差异风化,从而,岩石的结构、构造、化学成分、颗粒大小等逐渐发生变化,岩石发生不同程度的风化,类土质由之形成。同时,论文在以往类土质定义的基础上,主要针对类土质本身的物理化学性质,从类土质的成因、结构、物质组成方面完善其定义:类土质是由岩体风化而成的、物理化学及力学性质明显区别于均质土体、岩石的土体物质或破碎岩体物质,包括岩体全风化物以及全风化残积物。其中,全风化物保留或部分继承了原岩的结构、构造特征;全风化残积物已丧失了原岩的结构、构造特征,但物质成分同全风化物相似。 (2)影响工后沉降的因素很多,就类土质本身的物

8、理、化学性质而言,都难以计数,而且各影响因素之间还存在或多或少相互牵连。作者在阅读大量已有花岗岩全风化文献的基础上,分析整理出类土质的8个物理、化学指标:矿物成分、含水量、塑性指数、颗粒级配、孔隙特征、压缩特性、结构特征以及风化程度。之后,通过初期对上述8个指标分别做沉降监测,基于它们各自对沉降的贡献,分析它们对沉降控制的相关程度,按照相关系数由大到小排序依次为:含水量、颗粒级配、矿物成分、风化程度、残余结构、孔隙特征、塑性指数和压缩特性。 (3)变形的实质即是原有应力场或应变场的改变,路基的沉降即是在进行路基填筑过程中,由于上部荷载的作用,使路基新的应力场生成。FLAC(3D)基于有限差分原

9、理,摩尔库仑材料模型能够有效模拟土质材料地应力场的生成;另外,理正(软土)路基设计软件是工程中较为常用的路基沉降计算软件,因此论文选取了FLAC(3D)数值分析软件及理正(软土)路基设计软件对路基的工后沉降做模拟分析。FLAC(3D)模拟了基床开挖、换填,路堤填筑时地应力场的变化,总的趋势表现为换填压实过程,路基以均匀沉降为主,横向边界由于边界效应影响,其位移矢量与路基中心相比,相对较小;路堤填筑过程中,路堤下部基床则以盆型曲线沉降,沉降量随深度的递增而减小。FLAC(3D)计算类土质路基最终沉降量为:362.4mm。理正忽略了开挖对路基应力场的影响,通过路基类土质分层赋予不同的力学参数,综合考虑路基表层换填、路堤类土质填筑、路床及以上列车、轨道等荷载以及超载预压等载荷情况

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论