深入理解功率MOSFET数据表_第1页
深入理解功率MOSFET数据表_第2页
深入理解功率MOSFET数据表_第3页
深入理解功率MOSFET数据表_第4页
深入理解功率MOSFET数据表_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、深入理解功率MOSFET数据表 在汽车电子的驱动负载的各种应用中,最常见的半导体元件就是功率MOSFET了。本文不准备写成一篇介绍功率MOSFET的技术大全,只是让读者去了解如何正确的理解功率MOSFET数据表中的常用主要参数,以帮助设计者更好的使用功率MOSFET进行设计。数据表中的参数分为两类:即最大额定值和电气特性值。对于前者,在任何情况下都不能超过,否则器件将永久损害;对于后者,一般以最小值、最大值、和典型值的形式给出,它们的值与测试方法和应用条件密切相关。在实际应用中,若超出电气特性值,器件本身并不一定损坏,但如果设计裕度不足,可能导致电路工作失常。在功率MOSFET的数据

2、表给出的参数中, 通常最为关心的基本参数为、Qgs、和Vgs。更为高级一些的参数,如ID、Rthjc、SOA、Transfer Curve、EAS等,将在本文的下篇中再做介绍。为了使每个参数的说明更具备直观性和易于理解,选用了英飞凌公司的功率MOSFET,型号为IPD90N06S4-04( : 通态电阻。是和温度和Vgs相关的参数,是MOSFET重要的参数之一。在数据表中,给出了在室温下的典型值和最大值,并给出了得到这个值的测试条件,详见下表。 除了表格以外,数据表中还给出了通态电阻随着结温变化的数据图。从图中可以看出,结温越高,通态电阻越高。正是由于这个特性,当单个功率MOSFET

3、的电流容量不够时,可以采用多个同类型的功率MOSFET并联来进行扩流。如果需要计算在指定温度下的,可以采用以下的计算公式。 上式中为与工艺技术有关的常数,对于英飞凌的此类功率MOSFET,可以采用0.4作为常数值。如果需要快速的估算,可以粗略认为:在最高结温下的通态电阻是室温下通态电阻的2倍。下表的曲线给出了随环境温度变化的关系。 :定义了MOSFET的源级和漏级的最大能购承受的直流电压。在数据表中,此参数都会在数据表的首页给出。注意给出的值是在室温下的值。此外,数据表中还会给出在全温范围内(-55 C+175 C)  随着温度变化的曲线。 从

4、上表中可以看出,是随着温度变化的,所以在设计中要注意在极限温度下的 仍然能够满足系统电源对 的要求。Qgs:数据表中给出了为了使功率MOSFET导通时在给定了的Vds电压下,当Qgs变化时的栅级电荷变化的曲线。从图表中可以看出,为了使MOSFET完全导通,Qgs的典型值约等于10V,由于器件完全导通,可以减少器件的静态损耗。   Vgs:描述了在指定了漏级电流下需要的栅源电压。数据表中给出的是在室温下,当Vds= Vgs时,漏极电流在微安等级时的Vgs电压。数据表中给出了最小值、典型值和最大值。 需要注意的是,在同样的漏极电流下,Vg

5、s电压会随着结温的升高而减小。在高结温的情况下,漏极电流已经接近达到了Idss (漏极电流)。为此,数据表中还会给出一条比常温下指定电流大10倍的漏极电流曲线作为设计参考。如下图所示。 以上介绍了在功率MOSFET数据表中最为设计者关心的基本参数、Qgs、和Vgs。为了更深入的理解功率MOSFET的其它一些参数,本文仍然选用英飞凌公司的功率MOSFET为例,型号为IPD90N06S4-04(如果需要更好的理解功率MOSFET,则需要了解更多的一些参数,这些参数对于设计都是十分必要和有用的。这些参数是ID、Rthjc、SOA、Transfer Curve、和EAS。ID:定义了在室温下

6、漏级可以长期工作的电流。需要注意的是,这个ID电流的是在Vgs在给定电压下,TC=25下的ID电流值。ID的大小可以由以下的公式计算:   以IPD90N06S4-04为例,计算出的结果等于169A。为何在数据表上只标注90A呢?这是因为最大的电流受限于封装脚位与焊线直径,在数据表的注释1)中可以看到详细的解释。如下表所示: 此外,数据表中还给出了ID和结温之间的曲线关系。从下表中可以看出,当环境温度升高时, ID会随着温度而变化。在最差的情况下,需要考虑在最大环境温度下的ID的电流仍然满足电路设计的正常电流的要求。    

7、   Rthjc:温阻是对设计者需要非常关注的设计参数,特别是当需要计算功率MOSFET在单脉冲和不同占空比时的功率损耗时,就需要查看这个数据表来进行设计估算。笔者将在如何用数据表来进行设计估算中来具体解释。SOA:功率MOSFET的过载能力较低,为了保证器件安全工作,具有较高的稳定性和较长的寿命,对器件承受的电流、电压、和功率有一定的限制。把这种限制用Uds-Id坐标平面表示,便构成功率MOSFET的安全工作区(Safe Operating Area,缩称SOA)。同一种器件,其SOA的大小与偏置电压、冷却条件、和开关方式等都有关系。如果要细分SOA,还有二种分法。按栅极偏置分为正

8、偏置SOA和反偏置SOA;按信号占空比来分为直流SOA、单脉冲SOA、和重复脉冲SOA。功率MOSFET在开通过程及稳定导通时必须保持栅极的正确偏置,正偏置SOA是器件处于通态下容许的工作范围;相反,当关断器件时,为了提高关断速度和可靠性,需要使栅极处于反偏置,所以反偏置SOA是器件关断时容许的工作范围。直流SOA相当于占空比>1是的工作条件;单脉冲SOA则对应于占空比> 0时的工作条件;重复脉冲SOA对应于占空比在0 < D < 1时的工作条件。从数据表上可以看出:单脉冲SOA最大,重复脉冲SOA次之,直流SOA最窄。 Transfer Curve:是用图表

9、的方式表达出ID和Vgs的函数关系。厂商会给出在不同环境温度下的三条曲线。通常这三条曲线都会相交与一点,这个点叫做温度稳定点。如果加在MOSFET的Vgs低于温度稳定点(在IPD90N06S4-04中是Vgs<6.2V),此时的MOSFET是正温度系数的,就是說,ID的电流是随着结温同时增加的。在设计中,当应用在大电流的设计中时,应避免使功率MOSFET工作在在正温度系数区域。当Vgs超过温度稳定点(在IPD90N06S4-04中是Vgs>6.2V), MOSFET是正温度系数的, 就是說,ID的电流是随着结温的增加是减少的。这在实际应用中是一个非常好的特性,特别是是在大电流的设计应用中时,这个特性会帮助功率MOSFET通过减少ID电流来减少结温的增加。 EAS: 为了了解在雪崩电流情况下功率MOSFET的工作情况,数据表中给出了雪崩电流和时间对应的曲线,这个曲线上可以读出在相应的雪崩电流下,功率MOSFET在不损坏的情况下能够承受的时间。对于同样的雪崩能量,如果雪崩电流减少,能够承受的时间会变长,反之亦然。环境温度对于雪崩电流的等级也有影响,当环

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论