第三章3垂线偏差大地水准面差距的测定_第1页
第三章3垂线偏差大地水准面差距的测定_第2页
第三章3垂线偏差大地水准面差距的测定_第3页
第三章3垂线偏差大地水准面差距的测定_第4页
第三章3垂线偏差大地水准面差距的测定_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、上一讲应掌握的内容上一讲应掌握的内容一、有关高程测量的三个基本概念一、有关高程测量的三个基本概念1、大地高由两部分组成、大地高由两部分组成 地形高部分及大地水准面地形高部分及大地水准面(或似大地水准面或似大地水准面)高部分。高部分。2、水准面是个等位面,相邻两水准面的重力位差处处相同、水准面是个等位面,相邻两水准面的重力位差处处相同3、水准面是不平行的。水准面是不平行的。 同一水准面上,靠近两极处的重力值大于赤道附近的重力同一水准面上,靠近两极处的重力值大于赤道附近的重力值。值。 大范围内闭合水准路线闭合差理论值不等于零。大范围内闭合水准路线闭合差理论值不等于零。二、实际工作中涉及的四种高程系

2、统二、实际工作中涉及的四种高程系统 大地高系统、正高系统、正常高系统、力高系统。大地高系统、正高系统、正常高系统、力高系统。三、正高、正常高、力高理论上区别三、正高、正常高、力高理论上区别AAgdhWW0001AAAmHgdhg正01AAAmHgdh正常高1AAOHgdh力H大大=H正正+NH大大=H常常+上一讲应掌握的内容上一讲应掌握的内容四、四、正常高高差的计算公式正常高高差的计算公式BBABAAABhdh0.0000015395 sin2 mmH ()mmgH五、正常高与正高的差别五、正常高与正高的差别在高山地区可达在高山地区可达4米,在平原地区数厘米,在海水面上相等。米,在平原地区数厘

3、米,在海水面上相等。六、六、高程基准面高程基准面就是地面点高程的统一起算面。就是地面点高程的统一起算面。通常采用大地水准面作为高程基准面。通常采用大地水准面作为高程基准面。严格地讲,大地水准面与平均海水面不同。严格地讲,大地水准面与平均海水面不同。七、我国的国家高程基准七、我国的国家高程基准1956年黄海高程系统,其水准原点的高程为年黄海高程系统,其水准原点的高程为72.289m1985国家高程基准,其水准原点的高程为国家高程基准,其水准原点的高程为72.260mmHH029. 05685称为高程异常改正。称为高程异常改正。称水准面不平行改正称水准面不平行改正 亦称近似正高改正一、建立大地坐标

4、系统必须解决的问题 (回顾)选定或求定椭球的几何参数确定椭球中心的位置(椭球定位)确定椭球短轴的指向(椭球定向)最终目的:建立大地原点,求2 (1). 0 (2). 0, 0 (3). minZXYN即三个平移量参考椭球定位、定向应满足的条件:参考椭球定位、定向应满足的条件:(1)椭球短轴与指定历元的地球自转轴平行;(2)大地起始子午面与天文起始子午面平行;(3)在一定区域内椭球面与大地水准面最为密合。 相应的数学表达式为:相应的数学表达式为:即三个旋转量,KKKKLBAH(长半径(长半径a和扁率和扁率等)等)椭球定位椭球定位建立大地坐标系建立大地坐标系 依据天文测量和高程测量来实现依据天文测

5、量和高程测量来实现1、一点定位一点定位 在大地原点使:2、多点定位多点定位 在多点进行弧度测量使 按照广义弧度测量方程,采用最小二乘可求得椭球定位按照广义弧度测量方程,采用最小二乘可求得椭球定位参数和旋转参数及椭球几何参数。参数和旋转参数及椭球几何参数。0,00KKKN 二、实现参考椭球定位的方法,KKKKKKKKBLAHH正min)min(22新新或N如此确定的椭球中心与地球质心有较大的偏差,故为参心地固坐标系参心地固坐标系实质上法线与垂线一致实质上法线与垂线一致三、垂线偏差的概念与计算大地坐标同天文坐标的区别主要是由同一点的法线和垂线不一致,亦即由垂线偏差引起的。地面一点上的重力向量g和相

6、应椭球面上的法线向量 n之间的夹角定义为该点的垂线偏差u。很显然,根据所采用的椭球不同可分为绝对垂线偏差及相对垂线偏差,垂线与总地球椭球(或参考椭球)法线构成的角度称为绝对(或相对)垂线偏差,它们统称为天文大地垂线偏差。为计算表示方便,垂线偏差分解为子午圈分量子午圈分量和和卯酉圈分量卯酉圈分量。-克西, -艾塔1、垂线偏差分量、垂线偏差分量、的计算的计算 图中,u是垂线偏差, 为垂线偏差在子午圈分量, 为垂线偏差在卯酉圈上分量 12:sinsinsin()sin(90)cosZZ PL由得AAuAsincos222uBB)90(90()cosL若已知一点的若已知一点的垂线偏差,垂线偏差, 便可

7、将天文纬度和经度换算为大地纬度和经度:便可将天文纬度和经度换算为大地纬度和经度:secBL2、天文方位角归算为大地方位角的公式、天文方位角归算为大地方位角的公式3、天文天顶距、天文天顶距Z0归算为大地天顶距归算为大地天顶距Z的公式的公式tanA天ZAALAcot)cossin(sin)(sin)(LAAAZZsincos0或:上式称为上式称为拉普拉斯方程拉普拉斯方程上面讲的上面讲的垂线偏差公式垂线偏差公式和和拉普拉斯方程拉普拉斯方程是经典大地测量基本的、重要的公式。是经典大地测量基本的、重要的公式。在经典大地测量中,只能用实测的天文方位角由拉普拉斯在经典大地测量中,只能用实测的天文方位角由拉普

8、拉斯方程计算大地方位角。而用现代方程计算大地方位角。而用现代GPS测量技术可以直接算测量技术可以直接算出大地方位角,而不必再由实测的天文方位角推求。出大地方位角,而不必再由实测的天文方位角推求。(cossin)sec(sincos)tantan(cossin)secKKKYKXKKKKKYkXKKzKKKkXKYkKBLA4 4、广义垂线偏差公式和拉普拉斯方程、广义垂线偏差公式和拉普拉斯方程ZYXALB0secsinseccos1tansintancos0cossintansec教材上P31的公式(2-30)有误。 0, 0 , 0 XYZ顾及:定向条件四、测定垂线偏差的方法四、测定垂线偏差的

9、方法天文大地测量方法、重力测量方法、天文重力测量方法天文大地测量方法、重力测量方法、天文重力测量方法 、GPSGPS测量方法测量方法1 1、天文大地测量方法、天文大地测量方法 在天文大地点上,既进行大地测量取得大地坐标在天文大地点上,既进行大地测量取得大地坐标(B,L),又进行天文测量取得天文坐标又进行天文测量取得天文坐标(,),用垂线偏差公式),用垂线偏差公式直接计算直接计算 ,。 因天文测量难度大,求定较密点的垂线偏差很困难,只适因天文测量难度大,求定较密点的垂线偏差很困难,只适用于少数天文大地点。用于少数天文大地点。2 2、重力测量方法、重力测量方法 建立扰动位与垂线偏差的关系,即扰动位

10、与观测量建立扰动位与垂线偏差的关系,即扰动位与观测量( (重力重力异常异常) )的函数。的函数。 由维宁.曼尼兹公式计算垂线偏差重力测量方法求重力测量方法求垂线偏差垂线偏差00gg2001() cos2g QAddA 2001()sin2g QAddA 2222cos3( )csc12sin32sin12sinln(sinsin)21 sinQ2维宁.曼尼兹公式此公式是在假定大地水准面之外没有扰动物质及全此公式是在假定大地水准面之外没有扰动物质及全球重力异常球重力异常都已知的情况下推导的。然而这两都已知的情况下推导的。然而这两个条件都还不能实现,所以重力方法至今也没有得个条件都还不能实现,所以

11、重力方法至今也没有得到独立的应用。到独立的应用。-普西 -西塔 四、测定垂线偏差的方法四、测定垂线偏差的方法(续)(续)3 3、天文重力方法、天文重力方法 综合利用天文大地方法和重力测量方法来确定垂线偏差。综合利用天文大地方法和重力测量方法来确定垂线偏差。在在150150200km200km的天文大地点上用天文大地测量方法算得各的天文大地点上用天文大地测量方法算得各自的垂线偏差,在再其周围进行较密的重力测量(异常质量自的垂线偏差,在再其周围进行较密的重力测量(异常质量对垂线偏差的影响随着与计算点的距离增加而减小)。对垂线偏差的影响随着与计算点的距离增加而减小)。通过天文大地点上的天文大地垂线偏

12、差同重力垂线偏差的通过天文大地点上的天文大地垂线偏差同重力垂线偏差的比较,就可得出关于内插区域内点的垂线偏差的数据资料,比较,就可得出关于内插区域内点的垂线偏差的数据资料,从而实现内插确定垂线偏差的目的。从而实现内插确定垂线偏差的目的。4 4、GPSGPS测量方法测量方法在在GPS相对定位中,只要测出基线长相对定位中,只要测出基线长D,大地方位角,大地方位角A及高及高程异常差程异常差,便可求得垂线偏差。但这种方法应用是有条件,便可求得垂线偏差。但这种方法应用是有条件的,比如,地形平坦,基线不长,精度要求较低等。的,比如,地形平坦,基线不长,精度要求较低等。D 基线方向:cossin(1, 2,

13、)iiiiiAAin五、测定大地水准面差距的方法五、测定大地水准面差距的方法地球重力场模型法、地球重力场模型法、斯托克司方法、斯托克司方法、卫星无线电测高方法、卫星无线电测高方法、 GPSGPS高程拟合法、最小二乘配置法等高程拟合法、最小二乘配置法等1 1、用地球重力场模型法计算大地水准面差距、用地球重力场模型法计算大地水准面差距大地水准面上一点大地水准面上一点P P的实际重力位的实际重力位 与相应于点与相应于点P P的正常重的正常重力位力位 U U 之差,称之为该点的扰动位之差,称之为该点的扰动位T T,用下式表示,用下式表示UWTCTUW00000TTNnmmnmnmnnnPmSmCrar

14、GMrT0,20)(cos)sincos()(),(,20( )(cossin)(cos )nnn mn mn mnmGMaNCmSmPrr求大地水准面差距求大地水准面差距扰动位与大地水准面差距的关系式称为布隆斯公式布隆斯公式 扰动位T的球谐函数的级数展开式:利用地球重力场模型计算大地水准面差距利用地球重力场模型计算大地水准面差距N的计算公式:的计算公式:目前只能探测出起伏波长长于目前只能探测出起伏波长长于55km的大地水准面的大地水准面的特征,更短的地貌则无法得到描述。的特征,更短的地貌则无法得到描述。(360阶)阶)完全规格化的正常位球谐系数 完全规格化的勒让德函数大地水准面差距大地水准面

15、差距 00020)()(4dAdSgRN2( )csc()6sin1 5cos3cosln(sinsin)2222S 2 2、利用斯托克司积分公式计算、利用斯托克司积分公式计算斯托克司公式:要对地球表面积分,需全球重力资料。一般先用地球重力场模型确定较长波长的起伏,在再有限范围内应用斯托克司积分。SGNNN大地水准面差距大地水准面差距3 3、卫星无线电测高方法研究大地水准面、卫星无线电测高方法研究大地水准面 0r = r + h若已知卫星向量若已知卫星向量r和测量向量和测量向量h,就可计算出大地水准面的地心向就可计算出大地水准面的地心向径向量径向量r0;若给出大地水准面向;若给出大地水准面向量

16、量r0,并测量了向量,并测量了向量h,就可以,就可以确定测高仪的地心向径向量确定测高仪的地心向径向量r;当已知当已知r和和r0就可计算出就可计算出h,将此,将此值同观测值值同观测值h相比较,即可求出相比较,即可求出大地水准面起伏量。大地水准面起伏量。4 4、利用、利用GPSGPS高程拟合法研究似大地水准面高程拟合法研究似大地水准面 GPSGPS可以测出大地高(精度约可以测出大地高(精度约2cm2cm),如果在测区中选),如果在测区中选择一定的择一定的GPSGPS点同时联测几何水准测量,求出这些点的正点同时联测几何水准测量,求出这些点的正常高常高H常常,于是在这些点上便可求出高程异常,于是在这些

17、点上便可求出高程异常: : HH常25243210yaxaxyayaxaa大地水准面差距大地水准面差距 代入适当的数学拟合方程中,用最小二乘求解出各系数,代入适当的数学拟合方程中,用最小二乘求解出各系数,即可得到计算其他点高程异常,如:即可得到计算其他点高程异常,如:5 5、利用最小二乘配置法研究大地水准面、利用最小二乘配置法研究大地水准面(略)(略) 可以容纳天文、大地、重力及可以容纳天文、大地、重力及GPSGPS等多种观测资料等多种观测资料 一起处理。目前在试用中。一起处理。目前在试用中。六、确定地球形状的基本概念( (一一) )天文大地测量方法天文大地测量方法用弧度测量发现地球是圆球:在

18、地面同一子午线上两点,用大地测量方法测量子午线弧长S,用天文测量方法测定该弧两端的纬度差B,则地球半径:弧线法:弧线法:按子午圈弧长或平行圈弧长的弧度测量法。在子按子午圈弧长或平行圈弧长的弧度测量法。在子午圈上测量纬度差,在平行圈上测量经度差。午圈上测量纬度差,在平行圈上测量经度差。面积法:面积法:现代推求新的椭球元素是在原有旧的椭球元素基现代推求新的椭球元素是在原有旧的椭球元素基础上,综合利用天文、大地、重力及空间测量等资料,同椭础上,综合利用天文、大地、重力及空间测量等资料,同椭球定向、定位等一起实现的。球定向、定位等一起实现的。43222111,(),(BBafSBBafS),(BRfS

19、BSR000sinsincoscoscos)(cos)(sinsin)(cossin0)(cos)(sinZYXBLBLBHMBHMLBHMLBHNLHNLN旧新新新222sin cossin sincossincos0sincos sinsin cos cos0 xyzBLBLBLLNeBBLNeBBL 旧广义弧度测量方程式广义弧度测量方程式广义弧度测量方程式广义弧度测量方程式()cosLBaBN旧2222222222000(2sin)sincossincossincos()()(1)(1sin)(1sin)(1sin)sin1NNMeBeBBmeBBBBMMH aMHNeBNMeBeBBa

20、 旧旧其未知数是三个平移参数:其未知数是三个平移参数:X0,Y0,Z0,三个旋转参数:,三个旋转参数:x,y,z,一个尺度比参数,一个尺度比参数m,及椭球大小和,及椭球大小和形状参数形状参数a,。通常,在实用上。通常,在实用上舍去旋转和尺度比参数。舍去旋转和尺度比参数。在每个天文大地点上都可以列出如上的弧度方程在每个天文大地点上都可以列出如上的弧度方程式,依据式,依据条件下求出椭球元素、定位元素、定向元素等条件下求出椭球元素、定位元素、定向元素等222minminN新新新 或(二)重力测量方法(二)重力测量方法 应用克莱罗定理确定椭球大小和形状参数。在地面上至少测定二个点的重力,并把它们归算到

21、平均海水面上,并用天文方法测定这两点大地纬度及地球自转角速度,用几何方法确定椭球长半轴a,就可用克莱罗定理求解椭球扁率。211222(1sin)(1sin)eegBgB q252eaq(三)(三) 空间大地测量方法空间大地测量方法( (略略) )七、大地(参心地固)坐标系的建立 建立大地坐标系的内容包括:地球椭球元素的选定,椭球的定位和定向以及大地基准数据的确定。下面以我国下面以我国1980年国家大地坐标系的建立为例,介年国家大地坐标系的建立为例,介绍大地坐标系建立方法。绍大地坐标系建立方法。GDX80的大地原点上在设置的西安附近的永乐镇,在大地原点上进行了精密的天文测量和水准测量。采用了IU

22、GG 75椭球椭球,按多点定位多点定位进行椭球定位。椭球定向依据两个平行条件:椭球短轴平行于地球质心指向JYD1968.0极原点极原点的方向,首大地子午面平行于格林尼治平均天文子午面格林尼治平均天文子午面。大地原点上的天文观测数据(K,K,kl)作为椭球据以定向的参数。00022222coscoscossinsin (1sin)(1sin)sin1BLXBLYBZNMeBaeBBa GDZ80BJ54BJ54BJ54BJ54BJ54BJ54BJ54BJ54BJ54BJ 54GDX80在在BJ54基础上建立起来的基础上建立起来的按照广义弧度测量方程,采用最小二乘可求得椭球定位参数按照广义弧度测量方程,采用最小二乘可求得椭球定位参数和旋转参数及椭球几何参数。和旋转参数及椭球几何参数。 ( (有逐次趋近问题有逐次趋近问题) )在全国按在全国按11间隔,均匀选取间隔,均匀选取922点按广义弧度测量方程点按广义弧度测量方程式并以高程异常式并以高程异常取代大地水准面差距取代大地水准面差距N而列出任一点而列出任一点i的弧的弧度测量方程:度测量方程:参考椭球面与大地水准面的最佳拟合条件:参考椭球面与大地水准面的最佳拟合条件:2minG D Z80利用最小二乘法求得利用最小二乘法求得X0,Y0,Z0,a,因椭球元素已定,仅求定因椭球元素已定,仅求定3个平移参数。个平移参数。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论