数学系08数教毕业论文2_第1页
数学系08数教毕业论文2_第2页
数学系08数教毕业论文2_第3页
数学系08数教毕业论文2_第4页
数学系08数教毕业论文2_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学 号:080301158 毕 业 论 文论文题目:关于一阶微分方程解的研究姓 名:袁 婷学科专业:数学教育指导教师:桂旺生完成时间:2011年5 月 20 日摘要本文运用罗尔定理,零点定理,拉格朗日中值定理,极值定理,泰勒公式来研究一阶微分方程的解存在性,唯一性,总结了3种根的存在性及唯一性的证明思路,并举例给以应用,进一步对方程解的个数进行了讨论。关键词:解的存在性;解的唯一性;解的个数目录第一章 绪论11.1引言 11.2五个基本定理1第二章 一阶微分方程解的研究22.1 关于方程的解(或的零点)存在性的证明思路22.2 方程=0的解的唯一性的研究32.3 对方程的解的个数的讨论4参考文

2、献7第一章 绪论1.1 引言研究微分方程解的目的就在于掌握它所反映的客观规律,能动地解释所出现的各种现象并预测未来的情况。牛顿建立微积分的同时,又简单的研究了微分方程用级数求解,后来瑞士学家雅各布贝努利,欧拉,法国数学家克雷洛,拉各朗日等人又不断的研究和丰富了微分方程的理论。 微分方程的存在和唯一性定理对于微分方程的求解是十分重要的,本文主要来讨论方程是否有解,如果有解,是否唯一呢?如果不唯一,解的个数又是多少呢?1.2五个基本定理罗尔定理: 设函数满足如下条件:在闭区间a b上连续,在开区间(a b)内可导, ,则在(a b)内至少存在一个,使得;零值定理:设函数在a b上连续,且 则在(a

3、 b)内至少存在,使得 0 (a) ;拉格朗日中值定理: 设函数满足条件:在闭区间a b上连续,在开区间(a b)内可,;在(a b)内至少存在,使得 ;极值定理: 设函数在处可导,且在处取得极值,则 ;泰勒公式:若函数在 a b上存在直至n阶的连续导函数,在(a b)内存在直至n阶的连续导函数,在(a b)内存在n+1阶的导函数,则对任意给定的a b,至少一点(a b),使得;第二章一阶微分方程解的研究研究方程的解,关键是看方程的根是否存在,若存在,是否唯一,若不唯一,那么方程的解是几个呢? 2.1 关于方程的解(或的零点)存在性的证明思路 知道在a b或(a b)上连续,而没有说明是否可导

4、,则一般用闭区间上连续函数的零值定理证明做出的一个原函数。证明满足罗尔定理的条件,从而得出的零点证明。用反证法证明例1: 设在a b上连续,=0, 证明:在(a b)内至少存在一点,使得分析 本题仅在a b上连续,因而只能用零值定理证明 证:由假设与同号,不妨设由导数定义有由极限定理知一个 当 时 有 又=0 必定同理 由 ,一个 当 时, 有令 0 , 则当时, 当时, 又显然 在()上连续 , 由零值定理,在()内,从而在(a b)内至少 一个,使得 0 例2 :设,在闭区间 a b 上连续,在(a b)内可导,且对于(a b)的一切x 有 证明 :方程=0的两个相邻的根之间至少有=0的一

5、个实根证明:设(a b),且是=0的两个相邻的实根,若() 没有的实根,则可以在对函数应用罗尔定理,于是存在(),使得 则有式子与题中的条件相矛盾,则有命题得证 2.2 方程=0的解的唯一性的研究,我们了解一下存在唯一性的定理 ,定理如下:如果在R上连续且关于y满足利普希茨条件,则方程 (1.1)存在唯一的解,定义于区间上,连续且满足初始条件,这里(利用罗尔定理证明=0至少存在一个解; 利用函数单调性证明=0最多有一个实数解;也可以利用反证法来证明=0最多有一个实数解.下面的例题给以说明上面的证明唯一性的思路:例3:设函数在闭区间0 1上可微,对于0 1上的每一个x,函数 的值都在开区间(0

6、1)内,且,证明:在(0 1)内有且仅有一个x,使=x证明 :令,由题设知道在0 1上连续又由于,所以,由闭区间上的连续函数的零值定理可知:在(0 1)内至少一点x,使 =0,即另:用反证法证明在(0 1)内至多有一个零点,若不然 (0 1),且,使得,,由拉格朗日中值定理,至少存在一个,使得与题中的条件相矛盾综上所述,在(0 1)内有且仅有一个x,使=x.例4:设在1 上处处有 且f(1)=2,f(1)=-3,证明:在(1 )内方程=0仅有一个实数解证明: 把在x=1处展成一阶的泰勒展式,因此=由题中的条件,则, 于是,有, 可知,取时,又, 由罗尔定理可知,使 即方程=0,当时,方程有实数

7、解.又由题设时处处有,所以是单调递减的于是,当时 可知,当时是严格单调递减函数,因此最多有一个实数解,综上所述,在(1 )内方程=0仅有一个实数解。2.3 对方程的解的个数的讨论方程根个数讨论的一般步骤如下: 求出的拐点和的不存在点划分的单调递减性区间; 求出各单调之间的极值(或最值); 分析极值(或最值)与x轴的相对位置。 下面的例题给以应用. 例5:讨论方程,()的解解: 令,则,i)当时,因此可知,是单调递增的函数,而,由罗尔定理及单调性可知,在()内存在且仅存在一个,使得,即 ,所以;ii)当时,令,即,则有(拐点),又因为= ,所以为的唯一拐点,因此=为在()上的最值,因此,当,则,

8、所以当时, 方程=0有两个实数解;当时,即,亦即时,方程没有实数根;当 =0时,即 ,即时,方程有唯一的实数解;当b=0时,原方程可以推得,所以方程没有实数解.例6:证明方程在(0 )内有且仅有两个不同的实数解证明: =令, 则,令, 则有x=e,下面列表判极值点,如见表一:表一 判断极值点x(0,e)e(e,)正数0负数递增极大值递减由上表可以知道在(0 e)与 (e )分别至多有一个零点,又因为x=e是在(0 )上的唯一拐点,所以是在(0 )内的极大值,因此它是在(0 )内的最大值, 又由于, 而可以知道 在(0 e)与 (e )分别至少有一个零点,故在(0 )内有且仅有个不同的实数解即方

9、程在(0 )内有且仅有两个不同的实解.参考文献1王高雄,周之铭等常微分方程M.北京.高等教育出版社.2001年3月第三版;2华东师范大学数学系数学分析M .北京. 高等教育出版社.2001年7月第三版;3同济大学数学系研究室高等数学M.北京.高等教育出版社.2001年6月第四版。4 丁同仁, 李承治 . 常微分方程教程M 高等教育出版设, 1991.致谢经过近三个月的忙碌和工作,本次毕业论文已经接近尾声,作为一个毕业生的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有桂旺生老师的督促指导,以及一起工作的同学们的支持,想要完成这个设计是难以想象的 在这里首先要感谢我的指导老师桂老师平日里工作繁多,但在我做毕业设计的每个阶段,从查阅资料,设计草案的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导除了敬佩桂老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,并将积极影响

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论