高中物理人教版本册总复习总复习(市一等奖)2_第1页
高中物理人教版本册总复习总复习(市一等奖)2_第2页
高中物理人教版本册总复习总复习(市一等奖)2_第3页
高中物理人教版本册总复习总复习(市一等奖)2_第4页
高中物理人教版本册总复习总复习(市一等奖)2_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年陕西师大附中高一(下)期中物理试卷一、选择题(本题共15小题,每小题3分,共计45分.在每小题给出的四个选项中,其中1-10题只有一项符合题目要求,第11-15题有的有多项符合题目要求.全部选对的得3分,选对但不全的得1分,有选错的得0分)1.做直线运动的位移x与时间t的关系为x=5t+2t2(各物理量均采用国际单位制单位),则该质点()A.加速度为2m/s2B.前2s内的平均速度是6m/sC.任意相邻的1s内位移差都是4mD.任意1s内的速度增量都是2m/s2.一物体做直线运动,其加速度随时间变化的a﹣t图象如图所示.下列v﹣t图象中,可能正确描述此物体运动的是()A. B. C. D.3.如图所示,倾角为30°的斜面体放在水平地面上,一个重为G的球在水平力F的作用下,静止在光滑斜面上,现若将力F从水平方向逆时针转过某一角度α(α未知)后,仍保持F的大小,且小球和斜面也仍旧保持静止,则此时水平地面对斜面体的摩擦力f为()A.G B.G C.G D.04.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为2kg的物体A,处于静止状态.若将一个质量为3kg的物体B竖直向下轻放在A上的一瞬间,则B对A的压力大小为(取g=10m/s2)()A.30N B.0N C.15N D.12N5.如图所示,物体A和B质量均为m,且分别与轻绳连接跨过光滑轻质定滑轮,B放在水平面上,A与悬绳竖直.用力F拉B沿水平面向左匀速运动的过程中,绳对A的拉力的大小是()A.大于mg B.总等于mgC.小于mg D.以上三项都不正确6.有关圆周运动的基本模型,下列说法正确的是()A.如图a,汽车通过拱桥的最高点处于超重状态B.如图b所示是一圆锥摆,增大θ,但保持圆锥的高不变,则圆锥摆的角速度不变C.如图c,同一小球在光滑而固定的圆锥筒内的A、B位置先后分别做匀速度圆周运动,则在A、B两位置小球的角速度及所受筒壁的支持力大小相等D.火车转弯超过规定速度行驶时,内轨对内轮缘会有挤压作用7.2023年10月24日,“嫦娥五号”在西昌卫星发射中心发射升空,并在8天后以“跳跃式再入”方式成功返回地面.“跳跃式再入”值航天器在关闭发动机后进入大气层,依靠大气升力再次冲出大气层,降低速度后在进入大气层,如图所示,虚线为大气层的边界.已知地球半径R,地心到d点距离r,地球表面重力加速度为g.下列说法正确的是()A.“嫦娥五号”在b点处于完全失重状态B.“嫦娥五号”在d点的加速度小于C.“嫦娥五号”在a点速率大于在c点的速率D.“嫦娥五号”在c点速率大于在e点的速率8.飞机在飞行时受到的空气阻力与速率的平方成正比.若飞机以速率v匀速飞行时,发动机的功率为P,则当飞机以速率nv匀速飞行时,发动机的功率为()A.nP B.2nP C.n2P D.n3P9.如图,悬挂在O点的一根不可伸长的绝缘细线下端有一个带电量不变的小球A.在两次实验中,均缓慢移动另一带同种电荷的小球B.当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为θ,若两次实验中B的电量分别为q1和q2,θ分别为30°和45°.则为()A.2 B.3 C.2 D.310.如图所示,实线为电场线,虚线表示等势面,相邻两个等势面之间的电势差相等,有一个运动的负电荷经过等势面L3上某点时的动能为20J,运动至等势面L1上的某一点时动能变为0,若取L2为零等势面,则此电荷的电势能为4J时,其动能为()A.16J B.10J C.6J D.4J11.如图甲所示,物块的质量m=1kg,初速度v0=10m/s,在一水平向左的恒力F作用下从O点沿粗糙的水平面向右运动,某时刻后该力突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g=10m/s2.下列选项中正确的是()A.2~3s内物块做匀减速运动B.在t=1s时刻,恒力F反向C.物块与水平面间的动摩擦因数为D.恒力F大小为10N12.在大型物流货场,广泛的应用着传送带搬运货物.如图甲所示,与水平面倾斜的传送带以恒定速率运动,皮带始终是绷紧的,将m=1kg的货物放在传送带上的A处,经过到达传送带的B端.用速度传感器测得货物与传送带的速度v随时间t变化图象如图乙所示,已知重力加速度g=10m/s2.由v﹣t图可知()A.A、B两点的距离为B.货物与传送带的动摩擦因数为C.货物从A运动到B过程中,传送带对货物做功大小为D.货物从A运动到B过程中,货物与传送带摩擦产生的热量为13.为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1…总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2,则()A.X星球的质量为M=B.X星球表面的重力加速度为gx=C.登陆舱在T1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T114.+Q和﹣Q是两个等量异种点电荷,以点电荷+Q为圆心作圆,A、B为圆上两点,MN是两电荷连线的中垂线,与两电荷连线交点为O,下列说法正确的是()A.A点的电场强度大于B点的电场强度B.电子在A点的电势能小于在B点的电势能C.把质子从A点移动到B点,静电力对质子做功为零D.把质子从A点移动到MN上任何一点,质子的电势能变化都相同15.已知,一个均匀带电的球壳在壳内任意一点产生的电场强度均为零,在壳外某点产生的电场强度等同于把壳上电量全部集中在球心处的点电荷所产生的电场强度,即:E=0(r小于R),E=K(r大于R),式中R为球壳的半径,r为某点到球壳球心的距离,Q为球壳所带的电荷量,k为静电力常量.在真空中有一半径为R、电荷量为+Q的均匀带电球壳,球心位置O固定,P为球壳外一点,M为球壳内一点,如图所示,以无穷远为电势零点,关于P、M两点的电场强度和电势,下列说法中正确的是()A.若R变小,则P点的场强不变B.若R变小,则P点的电势升高C.若R变小(M点仍在壳内),则M点的电势升高D.若R变小(M点仍在壳内),则M点的场强不变二、实验题(共两小题,每空2分;共计16分)16.为了探究加速度与力、质量的关系,甲、乙、丙三位同学分别设计了如图所示的实验装置,小车总质量用M表示(乙图中M包括小车与传感器,丙图中M包括小车和与小车固连的滑轮),钩码总质量用m表示.(1)为便于测量合外力的大小,并得到小车总质量一定时,小车的加速度与所受合外力成正比的结论,下列说法正确的是A.三组实验中只有甲需要平衡摩擦力B.三组实验都需要平衡摩擦力C.三组实验中只有甲需要满足所挂钩码的总质量m远小于小车的总质量M的条件D.三组实验都需要满足所挂钩码的总质量m远小于小车的总质量M的条件(2)若乙、丙两位同学发现某次测量中力传感器和测力计读数相同,通过计算得到小车加速度均为a,a=g,g为当地重力加速度,则乙、丙两人实验时所用小车总质量之比为,乙、丙两人实验用的钩码总质量之比为.17.在“验证机械能守恒定律”的实验中(1)将下列主要的实验步骤,按照实验的合理顺序把步骤前的字母序号填在题后横线上:A.用手提着纸带使重物静止在靠近打点计时器处;B.将纸带固定在重物上,让纸带穿过固定在铁架台上的打点计时器的限位孔;C.取下纸带,在纸带上选点迹清晰的几点,测出它们与第一个点的距离,并算出重物在打下这几个点时的瞬时速度;D.接通电源,松开纸带,让重物自由下落;E.查出当地的重力加速度g的值,算出打下各计数点时的动能和相应的减少的重力势能,比较它们是否相等;F.把测量和计算得到的数据填入自己设计的表格里.答:.(2)物体重力势能的减少量和动能的增加量相应相比,实际上哪个值应偏小些?原因是什么?答:.(3)若自由下落的重物质量为1kg,获得一条纸带数据如图所示,单位是cm,g取s2,打点的时间间隔为.求:①打点计时器打下计数点B时,物体的速度vB=.②从起点O到打下计数点B的过程中,重力势能的减少量△EP=.此过程中物体动能的增量△EK=.(保留两位有效数字)三、计算论述题(18题8分、19题8分,20题10分21题13分,共计39分)18.月球半径约为地球半径的,月球表面重力加速度约为地球表面重力加速度的,把月球和地球都视为质量均匀分布的球体.求:(1)环绕地球和月球表面运行卫星的线速度之比;(2)地球和月球的平均密度之比.19.长为L的绝缘细线下系一带正电的小球,其带电荷量为Q,悬于O点,如图所示.当在O点处固定一个正电荷时,如果球静止在A处,则细线拉力是重mg的两倍.现将球拉至图中B处(θ=60°)放开球让它摆动,问:(1)固定在O处的正电荷的带电荷量为多少?(2)摆球回到A处时悬线拉力为多少?20.如图所示,物体质量m1=,视为质点,在C处弹簧发射器的作用下,沿光滑半圆轨道至最高点A处后在空中飞行,不计空气阻力,恰好沿PQ方向击中P点,∠PQC=53°,半圆的半径R=,A、P两点的竖直距离为米,g=10m/s2,sin53°=,cos53°=(1)此物体离开A点后作什么运动?在A点速度多大?A、P两点的水平距离为多大?物体在A点对轨道的压力有多大?(2)质量m2=的另一物体,也视为质点,放于与A点等高的光滑斜面BP上,其倾角为53°,问:当质量m1的物体刚要离开轨道A点时,静止释放质量m2的物体应该提前还是滞后多少时间,才能实现两物体同时到达P点?21.如图所示,在绝缘水平面O点固定一正电荷,电量为Q,在离O点高度为r0的A处由静止释放某带同种电荷、电量为q的液珠,开始运动瞬间的加速度大小恰好为重力加速度g.已知静电常量为k,两电荷均可看成点电荷,不计空气阻力.则:(1)液珠开始运动瞬间所受库仑力的大小和方向;(2)液珠运动速度最大时离O点的距离h;(3)已知该液珠运动的最大高度B点离O点的距离为2r0,则当电量为q的液珠仍从A处静止释放时,问能否运动到原来的最大高度B点?若能,则此时经过B点的速度为多大?

2023学年陕西师大附中高一(下)期中物理试卷参考答案与试题解析一、选择题(本题共15小题,每小题3分,共计45分.在每小题给出的四个选项中,其中1-10题只有一项符合题目要求,第11-15题有的有多项符合题目要求.全部选对的得3分,选对但不全的得1分,有选错的得0分)1.做直线运动的位移x与时间t的关系为x=5t+2t2(各物理量均采用国际单位制单位),则该质点()A.加速度为2m/s2B.前2s内的平均速度是6m/sC.任意相邻的1s内位移差都是4mD.任意1s内的速度增量都是2m/s【考点】匀变速直线运动的位移与时间的关系.【分析】对照匀变速直线运动的位移时间关系公式x=v0t+,即可求得质点的初速度和加速度,求出前2s内的位移之后,与时间相比即可求得平均速度.任意相邻的1s内位移差根据推论:△x=aT2求解.速度增量根据△v=at求解.【解答】解:A、根据匀变速直线运动的位移时间关系公式x=v0t+,得质点的初速度v0=5m/s,加速度a=4m/s2,A错误;B、由x=5t+2t2可得前2s内的平均速度为,B错误;C、任意相邻的1s内位移差:△x=aT2=4×12m=4m,C正确;D、任意1s内的速度增量:△v=at=4×1m/s=4m/s,D错误;故选:C2.一物体做直线运动,其加速度随时间变化的a﹣t图象如图所示.下列v﹣t图象中,可能正确描述此物体运动的是()A. B. C. D.【考点】匀变速直线运动的图像;匀变速直线运动的速度与时间的关系.【分析】本题应根据a﹣t图象分析物体的运动情况:当加速度与速度同向时,物体做加速运动,0~1s内,物体从静止开始沿加速度方向匀加速运动,当加速度与速度反向时,物体做减速运动,若加速度一定,物体做匀变速直线运动.匀变速直线运动的v﹣t图象是一条倾斜的直线.【解答】解:在0~s内,物体沿加速度方向做匀变速运动,v﹣t图象是倾斜的直线;在~T内,加速度为0,物体做匀速直线运动或处于静止状态,v﹣t图象是平行于t轴的直线;在T~2T内,加速度反向,物体做匀变速直线运动,到2T时刻速度为零.v﹣t图象是向下倾斜的直线.故AC正确,BD错误故选:AC.3.如图所示,倾角为30°的斜面体放在水平地面上,一个重为G的球在水平力F的作用下,静止在光滑斜面上,现若将力F从水平方向逆时针转过某一角度α(α未知)后,仍保持F的大小,且小球和斜面也仍旧保持静止,则此时水平地面对斜面体的摩擦力f为()A.G B.G C.G D.0【考点】共点力平衡的条件及其应用;物体的弹性和弹力.【分析】先研究第一种情况:通过对小球出状态的分析,利用共点力平衡条件可求出水平力F的大小.再研究力F方向变化后的情况:对小球受力分析,运用作图法求得力F与水平方向的角度,因为小球和斜面都处于静止状态,可对整体受力分析求出地面对斜面的摩擦力.【解答】解:对物体受力分析如图:由平衡条件得:N与F的合力F′与重力G大小相等,由三角函数关系得:F=Gtanθ代入数据得:F=G转过角度后,由F大小不变,小球静止,支持力与F的合力不变,故此时转动后F转方向如图:即:F转过的角度是2θ.对整体受力分析并正交分解如图:水平方向:f=Fcos2θ=G所以选项C正确故选:C4.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为2kg的物体A,处于静止状态.若将一个质量为3kg的物体B竖直向下轻放在A上的一瞬间,则B对A的压力大小为(取g=10m/s2)()A.30N B.0N C.15N D.12N【考点】牛顿第二定律;力的合成与分解的运用.【分析】放上B的瞬间,先对整体研究,根据牛顿第二定律求出加速度,再隔离分析,根据牛顿第二定律求出A对B的支持力的大小.【解答】解:开始弹簧的弹力等于A的重力,即F=mAg放上B的瞬间,弹簧弹力不变,对整体分析,根据牛顿第二定律得:a====6m/s2.隔离对B分析,有mBg﹣N=mBa,则:N=mB(g﹣a)=3×(10﹣6)N=12N.故选:D5.如图所示,物体A和B质量均为m,且分别与轻绳连接跨过光滑轻质定滑轮,B放在水平面上,A与悬绳竖直.用力F拉B沿水平面向左匀速运动的过程中,绳对A的拉力的大小是()A.大于mg B.总等于mgC.小于mg D.以上三项都不正确【考点】共点力平衡的条件及其应用;力的合成与分解的运用;运动的合成和分解.【分析】由于B做匀速运动,将B的运动分解为沿绳子方向的运动,以及垂直绳子方向运动即绕滑轮的转动,得到沿绳子方向的运动速度,即物体A的速度表达式,得到A的运动规律,再根据牛顿第二定律判断绳子拉力的变化情况.【解答】解:将B的运动分解为沿绳子方向的运动,以及垂直绳子方向运动即绕滑轮的转动,如图解得v2=vcosθ由于θ不断变小,故v2不断变大;由于物体A的速度等于v2,故物体A加速上升,加速度向上,即物体A处于超重状态,故绳子的拉力大于mg;故选A.6.有关圆周运动的基本模型,下列说法正确的是()A.如图a,汽车通过拱桥的最高点处于超重状态B.如图b所示是一圆锥摆,增大θ,但保持圆锥的高不变,则圆锥摆的角速度不变C.如图c,同一小球在光滑而固定的圆锥筒内的A、B位置先后分别做匀速度圆周运动,则在A、B两位置小球的角速度及所受筒壁的支持力大小相等D.火车转弯超过规定速度行驶时,内轨对内轮缘会有挤压作用【考点】向心力.【分析】分析每种模型的受力情况,根据合力提供向心力求出相关的物理量,进行分析即可.【解答】解:A、汽车在最高点mg﹣FN=知FN<mg,故处于失重状态,故A错误;B、如图b所示是一圆锥摆,重力和拉力的合力F=mgtanθ=mω2r;r=Lsinθ,知ω==,故增大θ,但保持圆锥的高不变,角速度不变,故B正确;C、根据受力分析知两球受力情况相同,即向心力相同,由F=mω2r知r不同角速度不同,故C错误;D、火车转弯超过规定速度行驶时,外轨对内轮缘会有挤压作用,故D错误.故选:B7.2023年10月24日,“嫦娥五号”在西昌卫星发射中心发射升空,并在8天后以“跳跃式再入”方式成功返回地面.“跳跃式再入”值航天器在关闭发动机后进入大气层,依靠大气升力再次冲出大气层,降低速度后在进入大气层,如图所示,虚线为大气层的边界.已知地球半径R,地心到d点距离r,地球表面重力加速度为g.下列说法正确的是()A.“嫦娥五号”在b点处于完全失重状态B.“嫦娥五号”在d点的加速度小于C.“嫦娥五号”在a点速率大于在c点的速率D.“嫦娥五号”在c点速率大于在e点的速率【考点】人造卫星的加速度、周期和轨道的关系.【分析】根据加速度的方向确定“嫦娥五号”处于超重还是失重,根据牛顿第二定律,结合GM=gR2求出d点的加速度.嫦娥五号从a点到c点,万有引力不做功,阻力做负功,根据动能定理比较a、c两点的速率大小.从c点到e点,机械能守恒,速率大小相等.【解答】解:A:“嫦娥五号“沿abc轨迹做曲线运动,曲线运动的合力指向曲线弯曲的**,所以在b点合力向上,即加速度向上,因此“嫦娥五号“在b点处于超重状态,故A错误.B、在d点,“嫦娥五号”的加速度a=,又GM=gR2,所以a=.故B错误.C、“嫦娥五号”从a点到c,万有引力不做功,由于阻力做功,则a点速率大于c点速率.故C正确.D、从c点到e点,没有空气阻力,机械能守恒,则c点速率和e点速率相等,故D错误.故选:C.8.飞机在飞行时受到的空气阻力与速率的平方成正比.若飞机以速率v匀速飞行时,发动机的功率为P,则当飞机以速率nv匀速飞行时,发动机的功率为()A.nP B.2nP C.n2P D.n3P【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】由题,飞机在飞行时受到的空气阻力与速率的平方成正比,可得到阻力的表达式f=kv2,k是比例系数.发动机的功率等于牵引力与速度的乘积,匀速运动时,牵引力与阻力大小相等,列出发动机功率为P与速度的关系,再求解速度为nv时的功率.【解答】解:由题得,阻力的表达式f=kv2,k是比例系数.当飞机以速率v匀速飞行时,发动机的功率为P,则有P=Fv,而牵引力F=f=kv2,则得P=kv3.当飞机以速率nv匀速飞行时,发动机的功率为P′=F′nv=f′nv=k(nv)2nv=n3kv3=n3P.故选D9.如图,悬挂在O点的一根不可伸长的绝缘细线下端有一个带电量不变的小球A.在两次实验中,均缓慢移动另一带同种电荷的小球B.当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为θ,若两次实验中B的电量分别为q1和q2,θ分别为30°和45°.则为()A.2 B.3 C.2 D.3【考点】库仑定律;共点力平衡的条件及其应用.【分析】小球A受力平衡,在两种情况下,对小球A受力分析,根据受力平衡的条件列方程既可以求得q1和q2的关系.【解答】解:A球电量不变,设为q0.两种情况下A球均受三个力作用下平衡.库仑力F=.A球质量设为m,对A球应用共点力平衡条件得F==mgtanθ,两球之间的距离r=Lsinθ,其中L为线长,r为两球球心之间的距离.由以上两式得到q=tanθsin2θ所以==2.故选C.10.如图所示,实线为电场线,虚线表示等势面,相邻两个等势面之间的电势差相等,有一个运动的负电荷经过等势面L3上某点时的动能为20J,运动至等势面L1上的某一点时动能变为0,若取L2为零等势面,则此电荷的电势能为4J时,其动能为()A.16J B.10J C.6J D.4J【考点】匀强电场中电势差和电场强度的关系;带电粒子在匀强电场中的运动.【分析】根据动能定理,结合等势面L3上、等势面L1上的动能得出在等势面L2上的动能,从而得出动能和电势能之和,结合能量守恒求出电势能为4J时其动能大小.【解答】解:负电荷经过等势面L3上某点时的动能为20J,运动至等势面L1上的某一点时动能变为0,因为相邻两个等势面间的电势差相等,电场力做功相等,所以等势面L2上的动能为10J,所以动能和电势能之和为10J,当电荷的电势能为4J时,其动能为6J.故C正确,A、B、D错误.故选:C.11.如图甲所示,物块的质量m=1kg,初速度v0=10m/s,在一水平向左的恒力F作用下从O点沿粗糙的水平面向右运动,某时刻后该力突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g=10m/s2.下列选项中正确的是()A.2~3s内物块做匀减速运动B.在t=1s时刻,恒力F反向C.物块与水平面间的动摩擦因数为D.恒力F大小为10N【考点】牛顿第二定律;匀变速直线运动的位移与时间的关系.【分析】通过图象可知,物块在恒力F作用下先做匀减速直线运动,恒力F反向后做匀加速直线运动,根据图线求出匀加速直线运动和匀减速直线运动的加速度大小,结合牛顿第二定律求出恒力F和摩擦力的大小.结合运动学公式求出恒力F反向的时刻.【解答】解:物体匀减速直线运动的加速度大小为:匀加速直线运动的加速度大小为:根据牛顿第二定律得:F+f=ma1,F﹣f=ma2联立两式解得:F=7N,f=3N则动摩擦因数为:物体匀减速直线运动的时间为:.即在0﹣1s内做匀减速直线运动,1s后恒力F反向,做匀加速直线运动.故B、C正确,A、D错误.故选:BC.12.在大型物流货场,广泛的应用着传送带搬运货物.如图甲所示,与水平面倾斜的传送带以恒定速率运动,皮带始终是绷紧的,将m=1kg的货物放在传送带上的A处,经过到达传送带的B端.用速度传感器测得货物与传送带的速度v随时间t变化图象如图乙所示,已知重力加速度g=10m/s2.由v﹣t图可知()A.A、B两点的距离为B.货物与传送带的动摩擦因数为C.货物从A运动到B过程中,传送带对货物做功大小为D.货物从A运动到B过程中,货物与传送带摩擦产生的热量为【考点】功能关系;牛顿第二定律;功的计算.【分析】物体在传送带上先做a1匀加速直线运动,然后做a2的匀加速直线运动,速度时间图线围成的面积的表示物块的位移,有速度图象确定匀加速的加速度,通过受力分析,找到合外力,计算夹角和摩擦因数,根据功的计算公式和能量守恒定律计算摩擦生热.【解答】解:A、物块在传送带上先做匀加速直线运动,当速度达到传送带速度,一起做匀速直线运动,所以物块由A到B的间距对应图象所围梯形的“面积”,x=s==.故A错误.B、由v﹣t图象可知,物块在传送带上先做a1匀加速直线运动,加速度为,对物体受力分析受摩擦力,方向向下,重力和支持力,得:mgsinθ+f=ma1,即:mgsinθ+μmgcosθ=ma1…①,同理,做a2的匀加速直线运动,对物体受力分析受摩擦力,方向向上,重力和支持力,加速度为:a2=得:mgsinθ﹣f=ma2,即:mgsinθ﹣μmgcosθ=ma2…①,联立①②解得:cosθ=,μ=,故B正确;C、根据功能关系,由B中可知f=μmgcosθ=×10×1×=4N,做a1匀加速直线运动,有图象知位移为:x1==,物体受力分析受摩擦力,方向向下,摩擦力做正功为:Wf1=fx1=4×=,同理做a2匀加速直线运动,有图象知位移为:x2==3m,物体受力分析受摩擦力,方向向上,摩擦力做负功为:Wf2=﹣fx2=﹣4×3=﹣12J,所以整个过程,传送带对货物做功大小为:12J﹣=,故C错误;D、根据功能关系,货物与传送带摩擦产生的热量等于摩擦力乘以相对位移,由C中可知:f=μmgcosθ=×10×1×=4N,做a1匀加速直线运动,位移为:x1==,皮带位移为:x皮=2×=,相对位移为:△x1=x皮﹣x1=﹣=,同理:做a2匀加速直线运动,位移为:x2==3m,x皮2=2×1=2m,相对位移为:△x2=x2﹣x皮2=3﹣2=1m,故两者之间的总相对位移为:△x=△x1+△x2=1+=,货物与传送带摩擦产生的热量为:Q=W=f△x=4×=,故D正确;故选:BD.13.为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1…总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2,则()A.X星球的质量为M=B.X星球表面的重力加速度为gx=C.登陆舱在T1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T1【考点】万有引力定律及其应用.【分析】研究飞船绕星球做匀速圆周运动,根据万有引力提供向心力,列出等式求出中心体的质量.研究登陆舱绕星球做匀速圆周运动,根据万有引力提供向心力,列出等式表示出线速度和周期.再通过不同的轨道半径进行比较.【解答】解:A、研究飞船绕星球做匀速圆周运动,根据万有引力提供向心力,列出等式:G=m1r1()2得出:M=,故A正确.B、根据圆周运动知识,a=只能表示在半径为r1的圆轨道上向心加速度,而不等于X星球表面的重力加速度,故B错误.C、研究登陆舱绕星球做匀速圆周运动,根据万有引力提供向心力有:在半径为r的圆轨道上运动:=m得出:v=,表达式里M为中心体星球的质量,R为运动的轨道半径.所以登陆舱在r1与r2轨道上运动时的速度大小之比为==,故C错误.D、研究登陆舱绕星球做匀速圆周运动,根据万有引力提供向心力,列出等式:在半径为r的圆轨道上运动:G=mr得出:T=2π.表达式里M为中心体星球的质量,R为运动的轨道半径.所以可得T2=T1.故D正确.故选:AD.14.+Q和﹣Q是两个等量异种点电荷,以点电荷+Q为圆心作圆,A、B为圆上两点,MN是两电荷连线的中垂线,与两电荷连线交点为O,下列说法正确的是()A.A点的电场强度大于B点的电场强度B.电子在A点的电势能小于在B点的电势能C.把质子从A点移动到B点,静电力对质子做功为零D.把质子从A点移动到MN上任何一点,质子的电势能变化都相同【考点】电场的叠加;电场强度;电势能.【分析】电场线越密的地方场强越大,电磁线越稀疏的地方场强越小,电场线与等势面相互垂直,电场线从高等势面指向低等势面,电场力做功等于电势能的变化量,根据电场线分布分析答题.【解答】解:等量异号电荷电场线分布如图所示:A、由图示电磁线分布可知,A处的电场线比B处的电场线稀疏,则A点的场强小于B点的场强,故A错误;B、电场线与等势面相互垂直,电场线从高等势面指向低等势面,由图示可知,A点所在等势面高于B点所在等势面,A点电势高于B点电势,电子带负电,则电子在A点的电势能小于在B点的电势能,故B正确;C、A、B两点电势不同,两点间的电势差不为零,把质子从A点移动到B点,静电力对质子做功不为零,故C错误;D、等量异号电荷连线的重锤线MN是等势线,A与MN上任何一点间的电势差都相等,把质子从A点移动到MN上任何一点,电场力做功都相等,质子的电势能变化都相同,故D正确;故选:BD.15.已知,一个均匀带电的球壳在壳内任意一点产生的电场强度均为零,在壳外某点产生的电场强度等同于把壳上电量全部集中在球心处的点电荷所产生的电场强度,即:E=0(r小于R),E=K(r大于R),式中R为球壳的半径,r为某点到球壳球心的距离,Q为球壳所带的电荷量,k为静电力常量.在真空中有一半径为R、电荷量为+Q的均匀带电球壳,球心位置O固定,P为球壳外一点,M为球壳内一点,如图所示,以无穷远为电势零点,关于P、M两点的电场强度和电势,下列说法中正确的是()A.若R变小,则P点的场强不变B.若R变小,则P点的电势升高C.若R变小(M点仍在壳内),则M点的电势升高D.若R变小(M点仍在壳内),则M点的场强不变【考点】电势差与电场强度的关系;电场强度.【分析】壳外P点的电场强度可由点电荷的电场强度公式分析,是将带电量的球壳看成处于O点的点电荷来处理.壳内任一点的电场强度是零.对于电势,可以由该点移动到电势为零处电场力做功与电量的比值来确定.【解答】解:A、若R变小,但P点的位置不变,P到Q的距离r不变,由E=K可知,P点的场强不变,故A正确;B、若R变小,由于P点的电场强度不变,所以从一电荷从P点移到无穷远处(电势为零),电场力做功不变,P与无穷远处间的电势差不变,因而P点的电势不变.故B错误;CD、若R变小(M点仍在壳内),根据题意可知,M点的电场强度仍为零,不变,因此球壳内的电势处处相等,由于球壳的变小,导致电荷从球壳移到无穷远处电场力做功增加,而球壳的电势比零大,所以球壳处的电势升高,M点的电势升高,故C、D正确;故选:ACD二、实验题(共两小题,每空2分;共计16分)16.为了探究加速度与力、质量的关系,甲、乙、丙三位同学分别设计了如图所示的实验装置,小车总质量用M表示(乙图中M包括小车与传感器,丙图中M包括小车和与小车固连的滑轮),钩码总质量用m表示.(1)为便于测量合外力的大小,并得到小车总质量一定时,小车的加速度与所受合外力成正比的结论,下列说法正确的是BCA.三组实验中只有甲需要平衡摩擦力B.三组实验都需要平衡摩擦力C.三组实验中只有甲需要满足所挂钩码的总质量m远小于小车的总质量M的条件D.三组实验都需要满足所挂钩码的总质量m远小于小车的总质量M的条件(2)若乙、丙两位同学发现某次测量中力传感器和测力计读数相同,通过计算得到小车加速度均为a,a=g,g为当地重力加速度,则乙、丙两人实验时所用小车总质量之比为1:2,乙、丙两人实验用的钩码总质量之比为1:2.【考点】探究加速度与物体质量、物体受力的关系.【分析】(1)根据实验原理,即可判定是否需要平衡摩擦力,及确定所挂钩码的总质量m与小车的总质量M的关系;(2)根据牛顿第二定律,结合动滑轮的拉力是测力计的示数2倍,从而即可求解.【解答】解:(1)AB、为便于测量合外力的大小,甲图通过钩码的总质量对应的重力即为合外力,而乙图是力传感器的示数,丙图则是测力计的2倍,因此它们都必须平衡摩擦力,故A错误,B正确;CD、由于甲图通过钩码的总质量对应的重力即为合外力,因此三组实验中只有甲需要满足所挂钩码的总质量m远小于小车的总质量M的条件,故C正确,D错误;(2)乙、丙两位同学发现某次测量中力传感器和测力计读数相同,且通过计算得到小车加速度均为a,根据牛顿第二定律,则有:F=M乙a,2F=M丙a;因此乙、丙两人实验时所用小车总质量之比为1:2;由牛顿第二定律,对砝码研究,则有m乙g﹣F=m乙a,而m丙g﹣F=m丙2a,因a=g,解得,m乙:m丙=1:2;即乙、丙两人实验用的钩码总质量之比为1:2;故答案为:(1)BC;(2)1:2,1:2.17.在“验证机械能守恒定律”的实验中(1)将下列主要的实验步骤,按照实验的合理顺序把步骤前的字母序号填在题后横线上:A.用手提着纸带使重物静止在靠近打点计时器处;B.将纸带固定在重物上,让纸带穿过固定在铁架台上的打点计时器的限位孔;C.取下纸带,在纸带上选点迹清晰的几点,测出它们与第一个点的距离,并算出重物在打下这几个点时的瞬时速度;D.接通电源,松开纸带,让重物自由下落;E.查出当地的重力加速度g的值,算出打下各计数点时的动能和相应的减少的重力势能,比较它们是否相等;F.把测量和计算得到的数据填入自己设计的表格里.答:BADCFE.(2)物体重力势能的减少量和动能的增加量相应相比,实际上哪个值应偏小些?原因是什么?答:动能的增加量,阻力做负功.(3)若自由下落的重物质量为1kg,获得一条纸带数据如图所示,单位是cm,g取s2,打点的时间间隔为.求:①打点计时器打下计数点B时,物体的速度vB=s.②从起点O到打下计数点B的过程中,重力势能的减少量△EP=.此过程中物体动能的增量△EK=.(保留两位有效数字)【考点】验证机械能守恒定律.【分析】(1)根据实验的原理确定需要测量的物理量,从而确定不必要的步骤.根据安装器材、进行实验、数据处理的顺序排列步骤.(2)因存在阻力,导致减小的重力势能没有完全转化为增加的动能;(3)纸带实验中,若纸带匀变速直线运动,测得纸带上的点间距,利用匀变速直线运动的推论,可计算出打出某点时纸带运动的瞬时速度,从而求出动能.根据功能关系得重力势能减小量等于重力做功的数值.【解答】解:(1)实验先进行器材的安装,顺序为:BA,然后进行实验,顺序为:D,最后数据处理和整理器材,为CFE.所以合理的顺序为:BADCFE.(2)在下落过程中需要克服阻力做功转化为内能,故动能值偏小;(3)每两个点之间有一个计时点,则相邻两个计数点之间的时间间隔为T=.利用匀变速直线运动的推论得:重力势能减小量:△Ep=mgh=1××=.vB==m/s=s重锤的动能EkB=mvB2=×1×()2=故答案为:(1)BADCFE;(2)动能的增加量,阻力做负功;(3)m/s,,.三、计算论述题(18题8分、19题8分,20题10分21题13分,共计39分)18.月球半径约为地球半径的,月球表面重力加速度约为地球表面重力加速度的,把月球和地球都视为质量均匀分布的球体.求:(1)环绕地球和月球表面运行卫星的线速度之比;(2)地球和月球的平均密度之比.【考点】万有引力定律及其应用.【分析】(1)卫星做运动运动所需向心力由万有引力提供,由牛顿第二定律求出两卫星的线速度,然后再求它们的比值.(2)星球表面的物体受到的重力等于星球对它的万有引力,据此求出星球的质量,然后由密度公式求出星球的密度,最后求出地球与月球的平均密度之比.【解答】解:(1)根据题意,在月球表面物体的重力等于万有引力:G=mg由万有引力定律提供向心力得:G=m联立解得:v=所以:=2:1(2)设想将一质量为m0的小体放在天体表面处.由万有引力定律可得在月球表面物体的重力等于万有引力:G=m0g又因为:ρ=联立解得:ρ=所以地球和月球的平均密度之比为:,即:=.答:(1)环绕地球和月球表面运行卫星的线速度之比为2:1;(2)地球和月球的平均密度之比为3:2.19.长为L的绝缘细线下系一带正电的小球,其带电荷量为Q,悬于O点,如图所示.当在O点处固定一个正电荷时,如果球静止在A处,则细线拉力是重mg的两倍.现将球拉至图中B处(θ=60°)放开球让它摆动,问:(1)固定在O处的正电荷的带电荷量为多少?(2)摆球回到A处时悬线拉力为多少?【考点】库仑定律;力的合成与分解的运用;共点力平衡的条件及其应用.【分析】(1)球静止在A处经受力分析知受三个力作用:重力、静电力F和细线拉力,由受力平衡和库仑定律列式求解(2)摆回的过程只有重力做功,所以机械能守恒,列出等式表示出最低点速度,由牛顿第二定律求解.【解答】解:(1)球静止在A处经受力分析知受三个力作用:重力mg、静电力F和细线拉力F拉,由受力平衡和库仑定律列式:F拉=F+mg,F=,F拉=2mg三式联立解得:q=.(2)摆回的过程只有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论