高中数学人教A版第一章三角函数 2023版必考部分第1章章末分层突破_第1页
高中数学人教A版第一章三角函数 2023版必考部分第1章章末分层突破_第2页
高中数学人教A版第一章三角函数 2023版必考部分第1章章末分层突破_第3页
高中数学人教A版第一章三角函数 2023版必考部分第1章章末分层突破_第4页
高中数学人教A版第一章三角函数 2023版必考部分第1章章末分层突破_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章末分层突破①180°②|α|R③eq\f(1,2)lR④相等⑤1⑥eq\f(sinα,cosα)⑦周期性⑧奇偶性⑨单调性⑩定义域⑪值域任意角的三角函数的定义及三角函数线掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数的定义求三角函数值,利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域.函数y=lg(2sinx-1)+eq\r(1-2cosx)的定义域为________.【精彩点拨】先列出三角函数的不等式组,再借助于三角函数线或三角函数的图象求解.【规范解答】要使函数有意义,必须有eq\b\lc\{\rc\(\a\vs4\al\co1(2sinx-1>0,,1-2cosx≥0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(sinx>\f(1,2),,cosx≤\f(1,2),))解得eq\b\lc\{\rc\(\a\vs4\al\co1(\f(π,6)+2kπ<x<\f(5,6)π+2kπ,,\f(π,3)+2kπ≤x≤\f(5,3)π+2kπ,))(k∈Z)∴eq\f(π,3)+2kπ≤x<eq\f(5π,6)+2kπ(k∈Z).故所求函数的定义域为eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(\f(π,3)+2kπ≤x<\f(5,6)π+2kπ,k∈Z)))).【答案】eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(\f(π,3)+2kπ≤x<\f(5,6)π+2kπ,k∈Z))))[再练一题]1.求函数f(x)=eq\r(-sinx)+eq\r(tanx-1)的定义域.【导学号:00680030】【解】要使函数f(x)有意义,则eq\b\lc\{\rc\(\a\vs4\al\co1(-sinx≥0,,tanx-1≥0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(sinx≤0,,tanx≥1,))如图所示,结合三角函数线知eq\b\lc\{\rc\(\a\vs4\al\co1(2kπ+π≤x≤2kπ+2πk∈Z,,kπ+\f(π,4)≤x<kπ+\f(π,2)k∈Z,))∴2kπ+eq\f(5π,4)≤x<2kπ+eq\f(3π,2)(k∈Z).故f(x)的定义域为eq\b\lc\[\rc\)(\a\vs4\al\co1(2kπ+\f(5π,4),2kπ+\f(3π,2)))(k∈Z).三角函数的最值问题三角函数的最值问题是三角函数基础知识的综合应用,它往往与二次函数、三角函数图象、函数的单调性等知识联系在一起,有一定的综合性.在求解时,一要注意三角函数式的变形方向;二要注意正弦、余弦函数本身的有界性,还要注意灵活运用方法.求函数f(x)=cos2x+sinx+1eq\b\lc\(\rc\(\a\vs4\al\co1(-\f(π,4)≤x))eq\b\lc\\rc\)(\a\vs4\al\co1(≤\f(π,4)))的最小值.【精彩点拨】本题应先通过同角三角函数关系式将函数转化成关于sinx的二次函数,然后再求最小值.【规范解答】f(x)=cos2x+sinx+1=1-sin2x+sinx+1=-sin2x+sinx+2=-eq\b\lc\(\rc\)(\a\vs4\al\co1(sinx-\f(1,2)))2+eq\f(9,4),又-eq\f(π,4)≤x≤eq\f(π,4),所以-eq\f(\r(2),2)≤sinx≤eq\f(\r(2),2).故当sinx=-eq\f(\r(2),2)时,f(x)取最小值eq\f(3-\r(2),2).[再练一题]2.求函数y=cos2x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,4),\f(π,4)))的值域.【解】y=-sin2x-sinx+1,令t=sinx.∵x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,4),\f(π,4))),∴t∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(\r(2),2),\f(\r(2),2))).原函数可化为y=-t2-t+1=-eq\b\lc\(\rc\)(\a\vs4\al\co1(t+\f(1,2)))2+eq\f(5,4),∴当t=-eq\f(1,2)时,有ymax=eq\f(5,4);当t=eq\f(\r(2),2)时,有ymin=eq\f(1-\r(2),2).故原函数值域为eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1-\r(2),2),\f(5,4))).三角函数的图象及变换三角函数的图象是研究三角函数性质的基础,又是三角函数性质的具体体现.在平时的考查中,主要体现在三角函数图象的变换和解析式的确定,以及通过对图象的描绘、观察来讨论函数的有关性质.如图1­1是函数y=Asin(ωx+φ)+keq\b\lc\(\rc\)(\a\vs4\al\co1(A>0,ω>0,|φ|<\f(π,2)))的一段图象.图1­1(1)求此函数解析式;(2)分析一下该函数是如何通过y=sinx变换得来的?【精彩点拨】(1)先确定A,k,再根据周期求ω,最后确定φ.(2)可先平移再伸缩,也可先伸缩再平移.【规范解答】(1)由图象知A=eq\f(-\f(1,2)-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,2))),2)=eq\f(1,2),k=eq\f(-\f(1,2)+\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,2))),2)=-1,T=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)-\f(π,6)))=π,∴ω=eq\f(2π,T)=2,∴y=eq\f(1,2)sin(2x+φ)-1.当x=eq\f(π,6)时,2×eq\f(π,6)+φ=eq\f(π,2),∴φ=eq\f(π,6),∴所求函数解析式为y=eq\f(1,2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))-1.(2)把y=sinx向左平移eq\f(π,6)个单位得到y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,6))),然后纵坐标保持不变、横坐标缩短为原来的eq\f(1,2),得到y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6))),再横坐标保持不变,纵坐标变为原来的eq\f(1,2)得到y=eq\f(1,2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6))),最后把函数y=eq\f(1,2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))的图象向下平移1个单位,得到y=eq\f(1,2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))-1的图象.[再练一题]3.已知函数y=eq\f(1,2)cosx+eq\f(1,2)|cosx|.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期;(3)指出这个函数的单调增区间.【解】(1)y=eq\f(1,2)cosx+eq\f(1,2)|cosx|=eq\b\lc\{\rc\(\a\vs4\al\co1(cosx,x∈\b\lc\[\rc\](\a\vs4\al\co1(2kπ-\f(π,2),2kπ+\f(π,2)))k∈Z,,0,x∈\b\lc\(\rc\](\a\vs4\al\co1(2kπ+\f(π,2),2kπ+\f(3π,2)))k∈Z.))函数图象如图所示.(2)该函数是周期函数,且由图象可知函数的最小正周期是2π.(3)由图象可知函数的单调增区间为eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ-\f(π,2),2kπ))(k∈Z).三角函数的性质三角函数的性质,重点应掌握y=sinx,y=cosx,y=tanx的定义域、值域、单调性、奇偶性、对称性等有关性质,在此基础上掌握函数y=Asin(ωx+φ),y=Acos(ωx+φ)及y=Atan(ωx+φ)的相关性质.在研究其相关性质时,将ωx+φ看成一个整体,利用整体代换思想解题是常见的技巧.已知函数f(x)=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))+a+1(其中a为常数).(1)求f(x)的单调区间;(2)若x∈eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))时,f(x)的最大值为4,求a的值;(3)求f(x)取最大值时x的取值集合.【精彩点拨】(1)将2x+eq\f(π,6)看成一个整体,利用y=sinx的单调区间求解.(2)先求x∈eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))时2x+eq\f(π,6)的范围,再根据最值求a的值.(3)先求f(x)取最大值时2x+eq\f(π,6)的值,再求x的值.【规范解答】(1)由-eq\f(π,2)+2kπ≤2x+eq\f(π,6)≤eq\f(π,2)+2kπ,k∈Z,解得-eq\f(π,3)+kπ≤x≤eq\f(π,6)+kπ,k∈Z,∴函数f(x)的单调增区间为eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,3)+kπ,\f(π,6)+kπ))(k∈Z),由eq\f(π,2)+2kπ≤2x+eq\f(π,6)≤eq\f(3π,2)+2kπ,k∈Z,解得eq\f(π,6)+kπ≤x≤eq\f(2π,3)+kπ,k∈Z,∴函数f(x)的单调减区间为eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6)+kπ,\f(2π,3)+kπ))(k∈Z).(2)∵0≤x≤eq\f(π,2),∴eq\f(π,6)≤2x+eq\f(π,6)≤eq\f(7π,6),∴-eq\f(1,2)≤sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))≤1,∴f(x)的最大值为2+a+1=4,∴a=1.(3)当f(x)取最大值时,2x+eq\f(π,6)=eq\f(π,2)+2kπ,∴2x=eq\f(π,3)+2kπ,∴x=eq\f(π,6)+kπ,k∈Z,∴当f(x)取最大值时,x的取值集合是eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(x=\f(π,6)))+kπ,k∈Z)).[再练一题]4.已知函数f(x)=(sinx+cosx)2+cos2x.(1)求f(x)的最小正周期;(2)求f(x)在区间eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))上的最大值和最小值.【解】(1)因为f(x)=sin2x+cos2x+2sinxcosx+cos2x=1+sin2x+cos2x=eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,4)))+1,所以函数f(x)的最小正周期为T=eq\f(2π,2)=π.(2)由(1)的计算结果知,f(x)=eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,4)))+1.当x∈eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))时,2x+eq\f(π,4)∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,4),\f(5π,4))),由正弦函数y=sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,4),\f(5π,4)))上的图象知,当2x+eq\f(π,4)=eq\f(π,2),即x=eq\f(π,8)时,f(x)取得最大值eq\r(2)+1;当2x+eq\f(π,4)=eq\f(5π,4),即x=eq\f(π,2)时,f(x)取得最小值0.综上,f(x)在eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))上的最大值为eq\r(2)+1,最小值为0.数形结合思想数形结合思想就是把抽象的数学语言与直观图形相结合进行思考,使抽象思维和形象思维结合,通过“以形助数”和“以数解形”使复杂问题简单化、抽象问题具体化,从而起到优化解题过程的目的.“以形助数”是借助形的生动和直观来阐述数间的联系.“以数解形”是借助于数的精确性、规范性、严密性来阐明形的某些属性.由于三角函数具有实际的几何背景,因此,在本章中,处处可见“数形结合”思想的身影.函数y=eq\f(2-sinx,3+cosx)的最小值为________,最大值为________.【精彩点拨】根据题目特征,构造符合题意图形,运用“数形结合”思想往往可以很简捷地解决问题.【规范解答】如图所示,y=eq\f(2-sinx,3+cosx)可看做定点A(3,2)与动点B(-cosx,sinx)连线的斜率,而动点(-cosx,sinx)是单位圆上点,故问题转化为定点与单位圆上点B连线的斜率的最值问题.根据数形结合不难得知,当连线与圆相切时,斜率取最值,解得ymin=eq\f(3-\r(3),4),ymax=eq\f(3+\r(3),4).【答案】eq\f(3-\r(3),4)eq\f(3+\r(3),4)[再练一题]5.求函数y=eq\f(sinx+1,cosx-2)的值域.【解】将y=eq\f(sinx+1,cosx-2)看成是单位圆上的点(cosx,sinx)到点(2,-1)的斜率,即求斜率的范围.如图所示,由解析几何知识可求得过点(2,-1),且与单位圆有交点的直线的斜率k∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(4,3),0)),即y∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(4,3),0)).转化与化归的思想化归思想贯穿本章的始终,在三角函数的恒等变形中,同角关系式和诱导公式常化繁为简,化异为同,弦切互化;在研究三角函数的图象与性质时,常把函数y=Asin(ωx+φ)化归为简单的y=sinx来研究.这些均体现三角函数中的转化与化归的思想方法.求函数y=eq\f(1,2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-\f(2,3)x))的单调区间.【精彩点拨】求三角函数y=Asin(ωx+φ)的单调区间,需先保证x的系数为正值,如果ω<0,那么应先进行转化,将x的系数化为正数,再求解.【规范解答】将原函数化为y=-eq\f(1,2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)x-\f(π,4))).由2kπ-eq\f(π,2)≤eq\f(2,3)x-eq\f(π,4)≤2kπ+eq\f(π,2)(k∈Z),得3kπ-eq\f(3,8)π≤x≤3kπ+eq\f(9,8)π(k∈Z),此时函数单调递减;由2kπ+eq\f(π,2)≤eq\f(2,3)x-eq\f(π,4)≤2kπ+eq\f(3,2)π(k∈Z),得3kπ+eq\f(9,8)π≤x≤3kπ+eq\f(21,8)π(k∈Z),此时函数单调递增.故原函数的单调递减区间为eq\b\lc\[\rc\](\a\vs4\al\co1(3kπ-\f(3,8)π,3kπ+\f(9,8)π))(k∈Z),单调递增区间为eq\b\lc\[\rc\](\a\vs4\al\co1(3kπ+\f(9,8)π,3kπ+\f(21,8)π))(k∈Z).[再练一题]6.求函数y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-x))的单调递增区间.【解】y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-x))=-2sineq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,4))).令z=x-eq\f(π,4),则y=-2sinz.∵z是x的一次函数,∴要取y=-2sinz的递增区间,即取sinz的递减区间,即2kπ+eq\f(π,2)≤z≤2kπ+eq\f(3π,2)(k∈Z),∴2kπ+eq\f(π,2)≤x-eq\f(π,4)≤2kπ+eq\f(3π,2)(k∈Z),2kπ+eq\f(3π,4)≤x≤2kπ+eq\f(7π,4)(k∈Z),∴函数y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-x))的递增区间为eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ+\f(3π,4),2kπ+\f(7π,4)))(k∈Z).1.将函数y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))的图象向右平移eq\f(1,4)个周期后,所得图象对应的函数为()=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,4))) =2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,3)))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,4))) =2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3)))【解析】函数y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))的周期为π,将函数y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))的图象向右平移eq\f(1,4)个周期即eq\f(π,4)个单位长度,所得图象对应的函数为y=2sineq\b\lc\[\rc\](\a\vs4\al\co1(2\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,4)))+\f(π,6)))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3))),故选D.【答案】D2.函数y=Asin(ωx+φ)的部分图象如图1­2所示,则()图1­2=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,6)))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3)))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,6)))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,3)))【解析】由图象知eq\f(T,2)=eq\f(π,3)-eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,6)))=eq\f(π,2),故T=π,因此ω=eq\f(2π,π)=2.又图象的一个最高点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3),2)),所以A=2,且2×eq\f(π,3)+φ=2kπ+eq\f(π,2)(k∈Z),故φ=2kπ-eq\f(π,6)(k∈Z),结合选项可知y=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,6))).故选A.【答案】A3.函数f(x)=cos(ωx+φ)的部分图象如图1­3所示,则f(x)的单调递减区间为()图1­3\b\lc\(\rc\)(\a\vs4\al\co1(kπ-\f(1,4),kπ+\f(3,4))),k∈Z\b\lc\(\rc\)(\a\vs4\al\co1(2kπ-\f(1,4),2kπ+\f(3,4))),k∈Z\b\lc\(\rc\)(\a\vs4\al\co1(k-\f(1,4),k+\f(3,4))),k∈Z\b\lc\(\rc\)(\a\vs4\al\co1(2k-\f(1,4),2k+\f(3,4))),k∈Z【解析】由图象知,周期T=2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,4)-\f(1,4)))=2,∴eq\f(2π,ω)=2,∴ω=π.由π×eq\f(1,4)+φ=eq\f(π,2)+2kπ,k∈Z,不妨取φ=eq\f(π,4),∴f(x)=coseq\b\lc\(\rc\)(\a\vs4\al\co1(πx+\f(π,4))).由2kπ<πx+eq\f(π,4)<2kπ+π,得2k-eq\f(1,4)<x<2k+eq\f(3,4),k∈Z,∴f(x)的单调递减区间为eq\b\lc\(\rc\)(\a\vs4\al\co1(2k-\f(1,4),2k+\f(3,4))),k∈Z.故选D.【答案】D4.设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(23π,6)))=()\f(1,2) \f(\r(3),2) D.-eq\f(1,2)【解析】∵f(x+π)=f(x)+sinx,∴f(x+2π)=f(x+π)-sinx.∴f(x+2π)=f(x)+sinx-sinx=f(x).∴f(x)是以2π为周期的周期函数.又feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(23π,6)))=feq\b\lc\(\rc\)(\a\vs4\al\co1(4π-\f(π,6)))=feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,6))).feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,6)+π))=feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,6)))+sineq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,6))),∴feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,6)))=feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,6)))-eq\f(1,2).∵当0≤x<π时,f(x)=0,∴feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,6)))=0,∴f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论