物理二轮复习 专题04 功能关系在力学中的应用讲学案_第1页
物理二轮复习 专题04 功能关系在力学中的应用讲学案_第2页
物理二轮复习 专题04 功能关系在力学中的应用讲学案_第3页
物理二轮复习 专题04 功能关系在力学中的应用讲学案_第4页
物理二轮复习 专题04 功能关系在力学中的应用讲学案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGE1学必求其心得,业必贵于专精专题04功能关系在力学中的应用本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.本专题的高频考点主要集中在功和功率的计算、动能定理、机械能守恒定律、功能关系的应用等几个方面,难度中等,本专题知识还常与曲线运动、电场、磁场、电磁感应相联系进行综合考查,复习时应多注意这些知识的综合训练和应用.功、能、能量守恒是近几年高考理科综合物理命题的重点、热点和焦点,也是广大考生普遍感到棘手的难点之一.能量守恒贯穿于整个高中物理学习的始终,是联系各部分知识的主线.它不仅为解决力学问题开辟了一条重要途径,同时也为我们分析问题和解决问题提供了重要依据.守恒思想是物理学中极为重要的思想方法,是物理学研究的极高境界,是开启物理学大门的金钥匙,同样也是对考生进行方法教育和能力培养的重要方面.因此,功、能、能量守恒可谓高考物理的重中之重,常作为压轴题出现在物理试卷中.纵观近几年高考理科综合试题,功、能、能量守恒考查的特点是:①灵活性强,难度较大,能力要求高,内容极丰富,多次出现综合计算;②题型全,不论是从内容上看还是从方法上看都极易满足理科综合试题的要求,经常与牛顿运动定律、圆周运动、电磁学和近代物理知识综合运用,在高考中所占份量相当大.一、求功的方法比较1.恒力做功的求法(1)应用公式W=Fscosα其中α是F、s间的夹角.(2)用动能定理(从做功的效果)求功:此公式可以求恒力做功也可以求变力做功.特别提醒:(1)应用动能定理求的功是物体所受合外力的功,而不是某一个力的功.(2)合外力的功也可用W合=F合scosα或W合=F1s1cosα+F2s2cosα+…求解.2.变力做功的求法名称适用条件求法平均值法变力F是位移s的线性函数W=Fscosα图象法已知力F与位移s的F-s图象图象下方的面积表示力做的功功率法已知力F做功的功率恒定W=Pt转换法力的大小不变,方向改变,如阻力做功,通过滑轮连接将拉力对物体做功转换为力对绳子做功,阻力做功W=-Ff·s功能法一般变力、曲线运动、直线运动W合=ΔEk或W其他=ΔE特别提醒:(1)摩擦力既可以做正功,也可以做负功,还可以不做功.(2)相互摩擦的系统内:一对静摩擦力做功的代数和总为零,静摩擦力起着传递机械能的作用,而没有机械能转化为其他形式的能;一对滑动摩擦力做功的代数和等于摩擦力与相对路程的乘积,其值为负值,W=-Ff·s相对,且Ff·s相对=ΔE损=Q内能.二、两种功率表达式的比较1.功率的定义式:P=eq\f(W,t),所求出的功率是时间t内的平均功率.2.功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角,该公式有两种用法:(1)求某一时刻的瞬时功率.这时F是该时刻的作用力大小,eq\a\vs4\al(v)取瞬时值,对应的P为F在该时刻的瞬时功率;(2)当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率.特别提醒:公式P=Fvcosθ在高中阶段常用于机车类问题的处理,此时P指发动机的输出功率,F为牵引力,Ff为阻力,则任一时刻都满足P=F·v,机车任一状态的加速度a=eq\f(F-Ff,m),当机车匀速运动时,F=Ff,P=F·v=Ff·v.三、对动能定理的理解1.对公式的理解(1)计算式为标量式,没有方向性,动能的变化为末动能减去初动能.(2)研究对象是单一物体或可以看成单一物体的整体.(3)公式中的位移和速度必须是相对于同一参考系,一般以地面为参考系.2.动能定理的优越性(1)适用范围广:应用于直线运动,曲线运动,单一过程,多过程,恒力做功,变力做功.(2)应用便捷:公式不涉及物体运动过程的细节,不涉及加速度和时间问题,应用时比牛顿运动定律和运动学方程方便,而且能解决牛顿运动定律不能解决的变力问题和曲线运动问题考点一力学中的几个重要功能关系的应用例1.【2017·天津卷】“天津之眼"是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一。摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变【答案】B【变式探究】将质量为m的小球在距地面高度为h处抛出,抛出时的速度大小为v0,小球落到地面时的速度大小为2v0,若小球受到的空气阻力不能忽略,则对于小球下落的整个过程,下面说法中正确的是()A.小球克服空气阻力做的功小于mghB.重力对小球做的功等于mghC.合外力对小球做的功小于mveq\o\al(2,0)D.重力势能的减少量等于动能的增加量答案AB解析从抛出到落地过程中动能变大了,重力做的功大于空气阻力所做的功,而这个过程中重力对小球做的功为mgh,所以选项A、B正确;从抛出到落地过程中,合外力做的功等于小球动能的变化量:W合=ΔEk=eq\f(1,2)m(2v0)2-eq\f(1,2)mveq\o\al(2,0)=eq\f(3,2)mveq\o\al(2,0)〉mveq\o\al(2,0),选项C错误;因为小球在下落的过程中克服空气阻力做功,所以重力势能的减少量大于动能的增加量,选项D错误.【变式探究】如图1所示,足够长传送带与水平方向的倾角为θ,物块a通过平行于传送带的轻绳跨过光滑轻滑轮与物块b相连,b的质量为m,开始时a、b及传送带均静止,且a不受传送带摩擦力作用,现让传送带逆时针匀速转动,则在b上升h高度(未与滑轮相碰)过程中()图1A.物块a重力势能减少mghB.摩擦力对a做的功大于a机械能的增加C.摩擦力对a做的功小于物块a、b动能增加之和D.任意时刻,重力对a、b做功的瞬时功率大小相等答案ABD考点二动力学方法和动能定理的综合应用例2.【2017·江苏卷】一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为,与斜面间的动摩擦因数不变,则该过程中,物块的动能与位移的关系图线是【答案】C【解析】向上滑动的过程中,根据动能定理:,同理,下滑过程中,由动能定理可得:,故C正确;ABD错误.【变式探究】某家用桶装纯净水手压式饮水器如图2所示,在手连续稳定的按压下,出水速度为v,供水系统的效率为η,现测量出桶底到出水管之间的高度差H,出水口倾斜,其离出水管的高度差可忽略,出水口的横截面积为S,水的密度为ρ,重力加速度为g,则下列说法正确的是()图2A.出水口单位时间内的出水体积Q=vSB.出水口所出水落地时的速度eq\r(2gH)C.出水后,手连续稳定按压的功率为eq\f(ρSv3,2η)+eq\f(ρvSgH,η)D.手按压输入的功率等于单位时间内所出水的动能和重力势能之和答案AC【变式探究】如图3所示,质量为m的滑块从h高处的a点沿圆弧轨道ab滑入水平轨道bc,滑块与轨道的动摩擦因数相同.滑块在a、c两点时的速度大小均为v,ab弧长与bc长度相等.空气阻力不计,则滑块从a到c的运动过程中()图3A.小球的动能始终保持不变B.小球在bc过程克服阻力做的功一定等于eq\f(1,2)mghC.小球经b点时的速度大于eq\r(gh+v2)D.小球经b点时的速度等于eq\r(2gh+v2)答案C考点三综合应用动力学和能量观点分析多过程问题例3.【2017·天津卷】(16分)如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为mA=2kg、mB=1kg。初始时A静止于水平地面上,B悬于空中。先将B竖直向上再举高h=1.8m(未触及滑轮)然后由静止释放。一段时间后细绳绷直,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。取g=10m/s2。空气阻力不计。求:(1)B从释放到细绳刚绷直时的运动时间t;(2)A的最大速度v的大小;(3)初始时B离地面的高度H。【答案】(1)(2)(3)【解析】(1)B从释放到细绳刚绷直前做自由落体运动,有:解得:(2)设细绳绷直前瞬间B速度大小为vB,有细绳绷直瞬间,细绳张力远大于A、B的重力,A、B相互作用,总动量守恒:绳子绷直瞬间,A、B系统获得的速度:之后A做匀减速运动,所以细绳绷直瞬间的速度v即为最大速度,A的最大速度为2m/s【变式探究】如图5所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0。8m的圆环剪去了左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R。用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点.用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后做匀变速运动,其位移与时间的关系为x=6t-2t2,物块飞离桌面后由P点沿切线落入圆轨道.不计空气阻力g=10m/s2,求:图5(1)物块m2过B点时的瞬时速度v0及与桌面间的滑动摩擦因数;(2)BP之间的水平距离;(3)判断m2能否沿圆轨道到达M点(要有计算过程);(4)释放后m2运动过程中克服摩擦力做的功.答案(1)6m/s0.4(2)4。1m(3)不能(4)5。6J解析(1)由物块m2过B点后其位移与时间的关系x=6t-2t2与x=v0t+eq\f(1,2)at2比较得:v0=6m/s加速度a=-4m/s2而-μm2g=m得μ=0.4(2)设物块由D点以vD做平抛运动落到P点时其竖直速度为vy=eq\r(2gR)根据几何关系有:eq\f(vy,vD)=tan45°解得vD=4m/s运动时间为:t=eq\r(\f(2R,g))=eq\r(\f(1。6,10))s=0。4s所以DP的水平位移为:4×0。4m=1.6mBD间位移为xBD=eq\f(v\o\al(2,D)-v\o\al(2,0),2a)=2.5m所以BP间位移为2.5m+1。6m=4。1m(3)设物块到达M点的临界速度为vM,有:m2g=m2eq\f(v\o\al(2,M),R)vM=eq\r(gR)=2eq\r(2)m/s由机械能守恒定律得:eq\f(1,2)m2vM′2=eq\f(1,2)m2veq\o\al(2,D)-eq\f(\r(2),2)m2gR解得vM′=eq\r(16-8\r(2))m/s因为eq\r(16-8\r(2))<2eq\r(2)所以物块不能到达M点.【变式探究】如图6所示,高台的上面有一竖直的eq\f(1,4)圆弧形光滑轨道,半径R=eq\f(5,4)m,轨道端点B的切线水平.质量M=5kg的金属滑块(可视为质点)由轨道顶端A由静止释放,离开B点后经时间t=1s撞击在斜面上的P点.已知斜面的倾角θ=37°,斜面底端C与B点的水平距离x0=3m.g取10m/s2,sin37°=0。6,cos37°=0。8,不计空气阻力.图6(1)求金属滑块M运动至B点时对轨道的压力大小;(2)若金属滑块M离开B点时,位于斜面底端C点、质量m=1kg的另一滑块,在沿斜面向上的恒定拉力F作用下由静止开始向上加速运动,恰好在P点被M击中.已知滑块m与斜面间动摩擦因数μ=0.25,求拉力F大小;(3)滑块m与滑块M碰撞时间忽略不计,碰后立即撤去拉力F,此时滑块m速度变为4m/s,仍沿斜面向上运动,为了防止二次碰撞,迅速接住并移走反弹的滑块M,求滑块m此后在斜面上运动的时间.答案(1)150N(2)13N(3)(0.5+eq\f(\r(7),2))s(2)M离开B后做平抛运动水平方向:x=vBt=5m由几何知识可知,m的位移:s=eq\f(x-x0,cos37°)=2。5m设滑块m向上运动的加速度为a由匀变速运动的位移公式得:s=eq\f(1,2)at2解得a=5m/s2对滑块m,由牛顿第二定律得:F-mgsin37°-μmgcos37°=ma解得F=13N(3)撤去拉力F后,对m,由牛顿第二定律得:mgsin37°+μmgcos37°=ma′解得a′=8m/s2滑块上滑的时间t′=eq\f(v,a′)=0.5s上滑位移:s′=eq\f(v2,2a′)=1m滑块m沿斜面下滑时,由牛顿第二定律得:mgsin37°-μmgcos37°=ma″解得a″=4m/s2下滑过程s+s′=eq\f(1,2)a″t″2解得t″=eq\f(\r(7),2)s滑块返回所用时间:t=t′+t″=(0.5+eq\f(\r(7),2))s1.【2017·新课标Ⅱ卷】如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力A.一直不做功 B.一直做正功C.始终指向大圆环圆心 D.始终背离大圆环圆心【答案】A2。【2017·江苏卷】一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为,与斜面间的动摩擦因数不变,则该过程中,物块的动能与位移的关系图线是【答案】C【解析】向上滑动的过程中,根据动能定理:,同理,下滑过程中,由动能定理可得:,故C正确;ABD错误.3。【2017·新课标Ⅲ卷】如图,一质量为m,长度为l的均匀柔软细绳PQ竖直悬挂。用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距。重力加速度大小为g。在此过程中,外力做的功为A. B. C. D.【答案】A4.【2017·天津卷】“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一。摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动。下列叙述正确的是A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变【答案】B5.【2017·新课标Ⅱ卷】如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.一小物块以速度从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时。对应的轨道半径为(重力加速度大小为g)A. B. C. D.【答案】B【解析】物块由最低点到最高点有:;物块做平抛运动:x=v1t;;联立解得:,由数学知识可知,当时,x最大,故选B。6.【2017·江苏卷】如图所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L,B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A由静止释放下降到最低点,两轻杆间夹角α由60°变为120°,A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g.则此下降过程中(A)A的动能达到最大前,B受到地面的支持力小于mg(B)A的动能最大时,B受到地面的支持力等于mg(C)弹簧的弹性势能最大时,A的加速度方向竖直向下(D)弹簧的弹性势能最大值为mgL【答案】AB7.【2017·天津卷】(16分)如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为mA=2kg、mB=1kg。初始时A静止于水平地面上,B悬于空中。先将B竖直向上再举高h=1.8m(未触及滑轮)然后由静止释放.一段时间后细绳绷直,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。取g=10m/s2。空气阻力不计.求:(1)B从释放到细绳刚绷直时的运动时间t;(2)A的最大速度v的大小;(3)初始时B离地面的高度H。【答案】(1)(2)(3)【解析】(1)B从释放到细绳刚绷直前做自由落体运动,有:解得:(2)设细绳绷直前瞬间B速度大小为vB,有细绳绷直瞬间,细绳张力远大于A、B的重力,A、B相互作用,总动量守恒:绳子绷直瞬间,A、B系统获得的速度:之后A做匀减速运动,所以细绳绷直瞬间的速度v即为最大速度,A的最大速度为2m/s1.【2016·全国卷Ⅱ】两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则()A.甲球用的时间比乙球长B.甲球末速度的大小大于乙球末速度的大小C.甲球加速度的大小小于乙球加速度的大小D.甲球克服阻力做的功大于乙球克服阻力做的功【答案】BD【解析】设f=kR,则由牛顿第二定律得F合=mg-f=ma,而m=eq\f(4,3)πR3·ρ,故a=g-eq\f(k,\f(4,3)πR2·ρ),由m甲>m乙、ρ甲=ρ乙可知a甲>a乙,故C错误;因甲、乙位移相同,由v2=2ax可知,v甲〉v乙,B正确;由x=eq\f(1,2)at2可知,t甲<t乙,A错误;由功的定义可知,W克服=f·x,又f甲〉f乙,则W甲克服>W乙克服,D正确.2.【2016·天津卷】我国高铁技术处于世界领先水平,和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比.某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组()图1。A.启动时乘客受到车厢作用力的方向与车运动的方向相反B.做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2C.进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D.与改为4节动车带4节拖车的动车组最大速度之比为1∶23.【2016·全国卷Ⅰ】如图1­,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态,直轨道与一半径为eq\f(5,6)R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内.质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高到达F点,AF=4R,已知P与直轨道间的动摩擦因数μ=eq\f(1,4),重力加速度大小为g.(取sin37°=eq\f(3,5),cos37°=eq\f(4,5))(1)求P第一次运动到B点时速度的大小.(2)求P运动到E点时弹簧的弹性势能.(3)改变物块P的质量,将P推至E点,从静止开始释放.已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点.G点在C点左下方,与C点水平相距eq\f(7,2)R、竖直相距R,求P运动到D点时速度的大小和改变后P的质量.图1。【答案】(1)2eq\r(gR)(2)eq\f(12,5)mgR(3)eq\f(3,5)eq\r(5gR)eq\f(1,3)m(2)设BE=x,P到达E点时速度为零,设此时弹簧的弹性势能为Ep.P由B点运动到E点的过程中,由动能定理有mgxsinθ-μmgxcosθ-Ep=0-eq\f(1,2)mveq\o\al(2,B)④E、F之间的距离l1为l1=4R-2R+x⑤P到达E点后反弹,从E点运动到F点的过程中,由动能定理有Ep-mgl1sinθ-μmgl1cosθ=0⑥联立③④⑤⑥式并由题给条件得x=R⑦Ep=eq\f(12,5)mgR⑧(3)设改变后P的质量为m1,D点与G点的水平距离x1和竖直距离y1分别为x1=eq\f(7,2)R-eq\f(5,6)Rsinθ⑨y1=R+eq\f(5,6)R+eq\f(5,6)Rcosθ⑩式中,已应用了过C点的圆轨道半径与竖直方向夹角仍为θ的事实.设P在D点的速度为vD,由D点运动到G点的时间为t。由平抛物运动公式有y1=eq\f(1,2)gt2⑪x1=vDt⑫联立⑨⑩⑪⑫式得vD=eq\f(3,5)eq\r(5gR)⑬设P在C点速度的大小为vC,在P由C运动到D的过程中机械能守恒,有eq\f(1,2)m1veq\o\al(2,C)=eq\f(1,2)m1veq\o\al(2,D)+m1geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,6)R+\f(5,6)Rcosθ))⑭P由E点运动到C点的过程中,同理,由动能定理有Ep-m1g(x+5R)sinθ-μm1g(x+5R)cosθ=eq\f(1,2)m1veq\o\al(2,C)⑮联立⑦⑧⑬⑭⑮式得m1=eq\f(1,3)m⑯4.【2016·全国卷Ⅱ】小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图1。所示.将两球由静止释放,在各自轨迹的最低点()图1。A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度【答案】C5.【2016·全国卷Ⅲ】一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍.该质点的加速度为()A。eq\f(s,t2)B.eq\f(3s,2t2)C。eq\f(4s,t2)D.eq\f(8s,t2)【答案】A6.【2016·全国卷Ⅲ】如图所示,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W。重力加速度大小为g。设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()图1.A.a=eq\f(2(mgR-W),mR)B.a=eq\f(2mgR-W,mR)C.N=eq\f(3mgR-2W,R)D.N=eq\f(2(mgR-W),R)【答案】AC【解析】质点P下滑到底端的过程,由动能定理得mgR-W=eq\f(1,2)mv2-0,可得v2=eq\f(2(mgR-W),m),所以a=eq\f(v2,R)=eq\f(2(mgR-W),mR),A正确,B错误;在最低点,由牛顿第二定律得N-mg=meq\f(v2,R),故N=mg+meq\f(v2,R)=mg+eq\f(m,R)·eq\f(2(mgR-W),m)=eq\f(3mgR-2W,R),C正确,D错误.7.【2016·天津卷】我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1。所示,质量m=60kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3。6m/s2匀加速滑下,到达助滑道末端B时速度vB=24m/s,A与B的竖直高度差H=48m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5m,运动员在B、C间运动时阻力做功W=-1530J,g取10m/s2。图1­(1)求运动员在AB段下滑时受到阻力Ff的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?【答案】(1)144N(2)12.5m【解析】(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,则有veq\o\al(2,B)=2ax①由牛顿第二定律有mgeq\f(H,x)-Ff=ma②联立①②式,代入数据解得Ff=144N③8.【2016·四川卷】韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1900J,他克服阻力做功100J.韩晓鹏在此过程中()A.动能增加了1900JB.动能增加了2000JC.重力势能减小了1900JD.重力势能减小了2000J【答案】C【解析】由题可得,重力做功1900J,则重力势能减少1900J,可得C正确,D错误.由动能定理:WG-Wf=ΔEk可得动能增加1800J,则A、B错误.9.【2016·浙江卷】如图1。4所示为一滑草场,某条滑道由上下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ。质量为m的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0。6,cos37°=0.8).则()图1.4A.动摩擦因数μ=eq\f(6,7)B.载人滑草车最大速度为eq\r(\f(2gh,7))C.载人滑草车克服摩擦力做功为mghD.载人滑草车在下段滑道上的加速度大小为eq\f(3,5)g10.【2016·全国卷Ⅱ】如图1.,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.已知在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM〈∠OMN〈eq\f(π,2).在小球从M点运动到N点的过程中()图1.A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差11.如图1­所示,倾角为α的斜面A被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B相连,B静止在斜面上.滑轮左侧的细线水平,右侧的细线与斜面平行.A、B的质量均为m.撤去固定A的装置后,A、B均做直线运动.不计一切摩擦,重力加速度为g。求:图1。(1)A固定不动时,A对B支持力的大小N;(2)A滑动的位移为x时,B的位移大小s;(3)A滑动的位移为x时的速度大小vA.【答案】(1)mgcosα(2)eq\r(2(1-cosα)·x)(3)eq\r(\f(2gxsinα,3-2cosα))【解析】(1)支持力的大小N=mgcosα(2)根据几何关系sx=x·(1-cosα),sy=x·sinα且s=eq\r(seq\o\al(2,x)+seq\o\al(2,y))解得s=eq\r(2(1-cosα))·x12.【2016·全国卷Ⅱ】轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图所示.物块P与AB间的动摩擦因数μ=0.5。用外力推动物块P,将弹簧压缩至长度l,然后放开,P(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点间的距离;(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.图1­【答案】(1)eq\r(6gl)2eq\r(2)l(2)eq\f(5,3)m≤M〈eq\f(5,2)m【解析】(1)依题意,当弹簧竖直放置,长度被压缩至l时,质量为5m的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律,弹簧长度为lEp=5mgl①设P的质量为M,到达B点时的速度大小为vB,由能量守恒定律得Ep=eq\f(1,2)Mveq\o\al(2,B)+μMg·4l②联立①②式,取M=m并代入题给数据得vB=eq\r(6gl)③若P能沿圆轨道运动到D点,其到达D点时的向心力不能小于重力,即P此时的速度大小v应满足eq\f(mv2,l)-mg≥0④设P滑到D点时的速度为vD,由机械能守恒定律得eq\f(1,2)mveq\o\al(2,B)=eq\f(1,2)mveq\o\al(2,D)+mg·2l⑤联立③⑤式得vD=eq\r(2gl)⑥vD满足④式要求,故P能运动到D点,并从D点以速度vD水平射出.设P落回到轨道AB所需的时间为t,由运动学公式得2l=eq\f(1,2)gt2⑦P落回到AB上的位置与B点之间的距离为s=vDt⑧联立⑥⑦⑧式得s=2eq\r(2)l⑨1.(多选)(2015·新课标全国Ⅱ·21)如图5,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g。则()图5A.a落地前,轻杆对b一直做正功B.a落地时速度大小为eq\r(2gh)C.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg由a的受力图可知,a下落过程中,其加速度大小先小于g后大于g,选项C错误;当a落地前b的加速度为零(即轻杆对b的作用力为零)时,b的机械能最大,a的机械能最小,这时b受重力、支持力,且FNb=mg,由牛顿第三定律可知,b对地面的压力大小为mg,选项D正确.2.(2015·四川理综·9)严重的雾霾天气,对国计民生已造成了严重的影响,汽车尾气是形成雾霾的重要污染源,“铁腕治污”已成为国家的工作重点.地铁列车可实现零排放,大力发展地铁,可以大大减少燃油公交车的使用,减少汽车尾气排放.图8如图8所示,若一地铁列车从甲站由静止启动后做直线运动,先匀加速运动20s达最高速度72km/h,再匀速运动80s,接着匀减速运动15s到达乙站停住.设列车在匀加速运动阶段牵引力为1×106N,匀速运动阶段牵引力的功率为6×103kW,忽略匀减速运动阶段牵引力所做的功.(1)求甲站到乙站的距离;(2)如果燃油公交车运行中做的功与该列车从甲站到乙站牵引力做的功相同,求公交车排放气态污染物的质量.(燃油公交车每做1焦耳功排放气态污染物3×10-6克答案(1)1950m(2)2。04kg解析(1)设列车匀加速直线运动阶段所用的时间为t1;距离为s1;在匀速直线运动阶段所用的时间为t2,距离为s2,速度为v;在匀减速直线运动阶段所用的时间为t3,距离为s3;甲站到乙站的距离为s.则s1=eq\f(1,2)vt1①s2=vt2②s3=eq\f(1,2)vt3③s=s1+s2+s3④联立①②③④式并代入数据得s=1950m⑤1.【2014·重庆卷】某车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k1和k2倍,最大速率分别为v1和v2,则()A.v2=k1v1B.v2=eq\f(k1,k2)v1C.v2=eq\f(k2,k1)v1D.v2=k2v1【答案】B【解析】本题考查机车启动过程中功率的相关知识.机车在不同的路面以相同的功率按最大速度行驶,可推断机车做匀速直线运动,受力平衡,由公式P=Fv,F=kmg,可推出P=k1mgv1=k2mgv2,解得v2=eq\f(k1,k2)v1,故B正确,A、C、D错误.2.【2014·新课标Ⅱ卷】取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为()A。eq\f(π,6)B.eq\f(π,4)C。eq\f(π,3)D。eq\f(5π,12)【答案】B3.【2014·全国卷】一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v时,上升的最大高度为H,如图所示;当物块的初速度为eq\f(v,2)时,上升的最大高度记为h。重力加速度大小为g.则物块与斜坡间的动摩擦因数和h分别为()A.tanθ和eq\f(H,2)B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v2,2gH)-1))tanθ和eq\f(H,2)C.tanθ和eq\f(H,4)D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v2,2gH)-1))tanθ和eq\f(H,4)【答案】D【解析】本题考查能量守恒定律.根据能量守恒定律,以速度v上升时,eq\f(1,2)mv2=μmgcosθeq\f(H,sinθ)+mgH,以eq\f(v,2)速度上升时eq\f(1,2)meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v,2)))eq\s\up12(2)=μmgcosθeq

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论