版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题4.5对数-重难点题型精讲1.对数的定义、性质与对数恒等式(1)对数的定义:一般地,如果SKIPIF1<0=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=SKIPIF1<0,其中a叫做对数的底数,N叫做真数.(2)对数的性质:①SKIPIF1<0=0,SKIPIF1<0=1(a>0,且a≠1),负数和0没有对数.
②对数恒等式:=N(N>0,a>0,且a≠1).(3)对数与指数的关系:根据对数的定义,可以得到对数与指数间的关系:当a>0,且a≠1时,=Nx=SKIPIF1<0.
用图表示为:2.常用对数与自然对数3.对数的运算性质如果a>0,且a≠1,M>0,N>0,n∈R,那么我们有:4.对数的换底公式及其推论(1)换底公式:设a>0,且a≠1,c>0,且c≠1,b>0,则SKIPIF1<0=SKIPIF1<0.(2)换底公式的推论:①SKIPIF1<0=1(a>0,且a≠1,b>0,且b≠1);
②SKIPIF1<0(a>0,且a≠1,b>0,且b≠1,c>0,且c≠1,d>0);
③SKIPIF1<0(a>0,且a≠1,b>0,m≠0,n∈R).5.对数的实际应用在实际生活中,经常会遇到一些指数或对数运算的问题.求解对数的实际应用题时,一是要合理建立数学模型,寻找量与量之间的关系;二是要充分利用对数的性质以及式子两边取对数的方法求解.
对数运算在实际生产和科学研究中应用广泛,其应用问题大致可以分为两类:
(1)建立对数式,在此基础上进行一些实际求值,计算时要注意指数式与对数式的互化;
(2)建立指数函数型应用模型,再进行指数求值,此时往往将等式两边同时取对数进行计算.【题型1对数的运算性质的应用】【方法点拨】对数式化简或求值的常用方法和技巧:对于同底数的对数式,化简的常用方法是:①“收”,即逆用对数的运算性质将同底对数的和(差)“收”成积(商)的对数,即把多个对数式转化为一个对数式;②“拆”,即正用对数的运算性质将对数式“拆”成较小真数的对数的和(差).【例1】(2022·黑龙江哈尔滨·高三开学考试)求值lg4+2lg5+A.8 B.9 C.10 D.1【变式1-1】(2022·天津·高考真题)化简(2logA.1 B.2 C.4 D.6【变式1-2】(2022·全国·高三专题练习)计算:2lgA.10 B.1 C.2 D.lg【变式1-3】(2022·全国·高三专题练习)化简1og6A.−log62 B.−【题型2换底公式的应用】【方法点拨】利用换底公式进行化简求值的原则和技巧(1)原则:化异底为同底;(2)技巧:①技巧一:先利用对数运算法则及性质进行部分运算,最后再换成同底;②技巧二:借助换底公式一次性统一换为常用对数(自然对数),再化简、通分、求值.【例2】(2022·全国·高一课时练习)已知a=lg2,b=lg3,则A.2a+2C.2−2aa【变式2-1】(2022·全国·高三专题练习)已知log23=m,logA.mn+3mn+1 B.m+【变式2-2】(2022·安徽·安庆市高一期末)已知a=lg2,b=lg3,用a,b表示log36A.2a+2b1−a B.【变式2-3】(2022·全国·高三专题练习)正实数a,b,c均不等于1,若loga(bc)+logbc=5,logba+logcb=3,则logca的值为()A.45 B.35 C.5【题型3指数式与对数式的互化】【方法点拨】根据所给条件,利用指数式和对数式的转化法则进行互化即可.【例3】(2021·全国·高一课时练习)下列对数式中,与指数式7xA.log7x=9 B.log9【变式3-1】(2021·江苏·高一专题练习)已知loga2=m,loga3=n,则a2m+n等于(
)A.5 B.7 C.10 D.12【变式3-2】(2021·全国·高一专题练习)下列指数式与对数式的互化中不正确的是(
)A.e0=1与ln1=0 B.log39=2与91C.8-13=12与log812=-1【变式3-3】(2022·湖南·高一课时练习)将13A.log913=−2C.log139=−2【题型4指、对数方程的求解】【方法点拨】解指数方程:将指数方程中的SKIPIF1<0看成一个整体,解(一元二次)方程,解出SKIPIF1<0的值,求x.解对数方程:对数方程主要有两种类型,第一种类型的对数方程两边都是对数式且底数相同,根据真数相同转化为关于x的方程求解;第二种类型的对数方程可整理成关于SKIPIF1<0的(一元二次)方程,解出SKIPIF1<0的值,求x.【例4】(2022·安徽·合肥模拟)方程lnlogA.1 B.2 C.e D.3【变式4-1】(2021·全国·高一专题练习)方程log2A.12 B.14 C.2【变式4-2】(2021·全国·高一课时练习)方程4x-2x+1-3=0的解是(
).A.log32 B.1 C.log23 D.2【变式4-3】(2022·陕西·高一阶段练习)如果方程(lgx)2+(lg7+lg5)lgx+lg7⋅lg5=0的两根为A.135 B.lg35 C.lg7⋅lg5 D.【题型5带附加条件的指、对数问题】【方法点拨】带附加条件的指、对数问题主要是已知一些指数值、对数值或其等量关系,利用这些条件来表示所要求的式子,解此类问题要充分利用指数、对数的转化,同时,还要注意整体思想的应用.【例5】(2022·全国·高一课时练习)已知loga3=m,loga2=(1)求am(2)若0<x<1,x+x−1【变式5-1】(2022·天津市高二期末)计算下列各题:(1)已知2a=5(2)求2log【变式5-2】(2022·辽宁·高一开学考试)已知3a=5,(1)27a(2)a+【变式5-3】(2021·徐州市期末)(1)已知2lg(x−2y(2)已知a+a−1=7,分别求a2【题型6对数的实际应用】【方法点拨】对数运算在实际生产和科学研究中应用广泛,其应用问题大致可以分为两类:(1)建立对数式,在此基础上进行一些实际求值,计算时要注意指数式与对数式的互化;(2)建立指数函数型应用模型,再进行指数求值,此时往往将等式两边同时取对数进行计算.【例6】(2022·广东汕头·高三阶段练习)核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时监测,在PCR扩增的指数时期,荧光信号强度达到阀值时,DNA的数量X与扩增次数n满足lgXn=nlg(1+A.22.2% B.43.8% C.56.2% D.77.8%【变式6-1】(2022·四川绵阳·高二期末(文))酒驾是严重危害交通安全的违法行为.根据国家有关规定:100mL血液中酒精含量在20~80mg之间为酒后驾车,80mg及以上为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了2.4mg/mL,且在停止喝酒以后,他血液中的酒精含量会以每小时20%的速度减少,若他想要在不违法的情况下驾驶汽车,则至少需经过的小时数约为(
)(参考数据:lg2≈0.3,lg3≈0.48)A.12 B.11 C.10 D.9【变式6-2】(2022·河南安阳·高三开学考试(理))香农定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学易读错的汉字
- 沪科版八年级数学上册第14章全等三角形14-2三角形全等的判定第4课时三角形全等的判定“角角边”课件
- 人教版七年级下期语法聚焦句型复习提纲
- 苏教版八年级生物上册第7单元第二十章生物圈是最大的生态系统素养综合检测课件
- 企业伦理学(原书第5版) 课件 第5、6章 企业社会责任;伦理决策:雇主的义务和雇员的权利
- 2024-2025学年版块8 运动和力 专题8-4 力的合成 (含答案) 初中物理尖子生自主招生培优讲义83讲
- 大学生创新创业项目之DIY陶瓷作坊
- 重庆市九龙坡区2024年中考语文适应性考试试卷(含答案)
- 内蒙古呼伦贝尔市2024年中考数学全真模拟试卷含解析
- 江苏省常州市正衡中学2024-2025学年八年级上学期期中模拟英语试卷
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- EDA实验报告1组合逻辑电路的设计
- 科学教学设计《食物链》
- 力朴素抗癌药理药效及其合成
- 球磨机设计说明书
- 餐饮美学餐饮空间格局设计
- 有效初三英语课堂教学ppt课件
- 幸福在哪里作文800字高中范文
- 五人制足球比赛记录表.doc
- 整式的乘法与因式分解所有知识点总结
- 《运动生理学》教案
评论
0/150
提交评论