版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆伊宁生产建设兵团四师一中2023年高一数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数在R上是单调函数,则的解析式可能为()A. B.C. D.2.已知,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a3.已知角的终边经过点,则的值为()A.11 B.10C.12 D.134.函数,则f(log23)=()A.3 B.6C.12 D.245.下列说法正确的是A.截距相等的直线都可以用方程表示B.方程不能表示平行轴的直线C.经过点,倾斜角为直线方程为D.经过两点,的直线方程为6.函数取最小值时的值为()A.6 B.2C. D.7.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件8.如图,其所对应的函数可能是()A B.C. D.9.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):甲:9,10,11,12,10,20;乙:8,14,13,10,12,21.根据所抽取的甲、乙两种麦苗的株高数据,给出下面四个结论,其中正确的结论是()A.甲种麦苗样本株高的平均值大于乙种麦苗样本株高的平均值B.甲种麦苗样本株高的极差小于乙种麦苗样本株高的极差C.甲种麦苗样本株高的75%分位数为10D.甲种麦苗样本株高的中位数大于乙种麦苗样本株高的中位数10.已知,则()A. B.C. D.11.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.12.已知偶函数f(x)在区间单调递增,则满足的x取值范围是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是________14.设向量不平行,向量与平行,则实数_________.15.在正方体中,则异面直线与的夹角为_________16.计算____________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(,)的部分图象如图所示.(1)求的解析式;(2)若对任意,恒成立,求实数m的取值范围;(3)求实数a和正整数n,使得()在上恰有2021个零点.18.若是从四个数中任取的一个数,是从三个数中任取的一个数(1)求事件“”的概率;(2)求事件“方程有实数根”的概率19.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)20.已知函数.(1)若,解不等式;(2)解关于x的不等式.21.已知函数过点(1)求的解析式;(2)求的值;(3)判断在区间上的单调性,并用定义证明22.设,其中(1)当时,求函数的图像与直线交点的坐标;(2)若函数有两个不相等的正数零点,求a的取值范围;(3)若函数在上不具有单调性,求a的取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可【详解】当时,为增函数,则在上为增函数,且,A.在上为增函数,,故不符合条件;B.为减函数,故不符合条件;C.在上为增函数,,故符合条件;D.为减函数,故不符合条件.故选:C.2、A【解析】找中间量0或1进行比较大小,可得结果【详解】,所以,故选:A.【点睛】此题考查利用对数函数、指数函数的单调性比较大小,属于基础题3、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论4、B【解析】由对数函数的性质可得,再代入分段函数解析式运算即可得解.【详解】由题意,,所以.故选:B.5、D【解析】A错误,比如过原点的直线,横纵截距均为0,这时就不能有选项中的式子表示;B当m=0时,表示的就是和y轴平行的直线,故选项不对C不正确,当直线的倾斜角为90度时,正切值无意义,因此不能表示.故不正确D根据直线的两点式得到斜率为,再代入一个点得到方程为:故答案为D6、B【解析】变形为,再根据基本不等式可得结果.【详解】因为,所以,所以,当且仅当且,即时等号成立.故选:B【点睛】本题考查了利用基本不等式求最值时,取等号的条件,属于基础题.7、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.8、B【解析】代入特殊点的坐标即可判断答案.【详解】设函数为,由图可知,,排除C,D,又,排除A.故选:B.9、B【解析】对A,由平均数求法直接判断即可;由极差概念可判断B,结合百分位数概念可求C;将甲乙两组数据排序,可判断D.【详解】甲组数据的平均数为9+10+11+12+10+206=12,乙组数据的平均数为8+14+13+10+12+216甲种麦苗样本株高的极差为11,乙种麦苗样本株高的极差为13,故B正确;6×0.75=4.5,故甲种麦苗样本株高的75%分位数为第5位数,为12,故C错误;甲种麦苗样本株高的中位数为10.5,乙种麦苗样本株高的中位数为12.5,故D错误.故选:B10、D【解析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【详解】由得,,所以故选:D11、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.12、A【解析】由偶函数性质得函数在上的单调性,然后由单调性解不等式【详解】因为偶函数在区间上单调递增,所以在区间上单调递减,故越靠近轴,函数值越小,因为,所以,解得:.故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、{x|-1<x≤1}【解析】先作函数图象,再求交点,最后根据图象确定解集.【详解】令g(x)=y=log2(x+1),作出函数g(x)的图象如图由得∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}【点睛】本题考查函数图象应用,考查基本分析求解能力.14、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:15、【解析】先证明,可得或其补角即为异面直线与所成的角,连接,在中求即可.【详解】在正方体中,,所以,所以四边形是平行四边形,所以,所以或其补角即为异面直线与所成的角,连接,由为正方体可得是等边三角形,所以.故答案为:【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角16、5【解析】由分数指数幂的运算及对数的运算即可得解.【详解】解:原式,故答案为:5.【点睛】本题考查了分数指数幂的运算及对数的运算,属基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)(3)当时,;当时,【解析】(1)根据图象的特点,通过的周期和便可得到的解析式;(2)通过换元转化为一元二次不等式的恒成立问题,根据二次函数的特点得到,然后解出不等式即可;(3)将函数的零点个数问题,转化为的图象与直线的交点个数问题,然后分析在一个周期内与的交点情况,根据的取值情况分类讨论即可【小问1详解】根据图象可知,且,的周期为:解得:,此时,,且可得:解得:故【小问2详解】当时,令,又恒成立等价于在上恒成立令,则有:开口向上,且,只需即可满足题意故实数m的取值范围是【小问3详解】由题意可得:的图象与直线在上恰有2021个零点在上时,,分类讨论如下:①当时,的图象与直线在上无交点;②当时,的图象与直线在仅有一个交点,此时的图象与直线在上恰有2021个交点,则;③当或时,的图象与直线在上恰有2个交点,的图象与直线在上有偶数个交点,不会有2021个交点;④当时,的图象与直线在上恰有3个交点,此时才能使的图象与直线在上有2021个交点.综上,当时,;当时,.18、(1)(2)【解析】(1)利用列举法求解,先列出取两数的所有情况,再找出满足的情况,然后根据古典概型的概率公式求解即可,(2)由题意可得,再根据对立事件的概率公式求解【小问1详解】设事件表示“”因为是从四个数中任取的一个数,是从三个数中任取的一个数所以样本点一共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示的取值,第二个数表示的取值符合古典概型模型,事件包含其中3个样本点,故事件发生的概率为【小问2详解】若方程有实数根,则需,即记事件“方程有实数根”为事件,由(1)知,故19、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因为θ∈,所以2θ+∈,所以当2θ+,即θ=时,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故当θ=时,矩形ABCD的面积S最大,最大面积为838.35m2.【点睛】关键点点睛:本题考查三角函数的应用,解题关键是利用表示出矩形的边长,从而得矩形面积.利用三角函数恒等变换公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求得最大值20、(1);(2)答案见解析【解析】(1)由抛物线开口向上,且其两个零点为,,可得不等式的解集.(2)由对应的二次方程的判别式,其两根为,.讨论时,时,时,其两根的大小,由此可得不等式的解集.【详解】解:(1)当时,不等式可化为,又由,得,.因为抛物线开口向上,且其两个零点为,,所以不等式的解集为.(2)对于二次函数,其对应的二次方程的判别式,其两根为,.当,即时,不等式的解集为;当,即时,不等式的解集为;当,即时,不等式的解集为;综上,时,不等式的解集为;时,不等式无解;时,不等式的解集为.21、(1)(2)(3)在区间上单调递增;证明见解析【解析】(1)直接将点的坐标代入函数中求出,从而可求出函数解析式,(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单片机原理及应用(C51版)第5章课后题答案
- 2023-2024学年河南省商丘市八年级(上)期中数学试卷
- 2023-2024学年浙江省金华市婺城区九年级(上)作业质量检测数学试卷(一)
- 六年级英语复习资料及语法点
- 2024-2025学年版块17 电功率 专题17-6 极值范围类计算 (含答案) 初中物理尖子生自主招生培优讲义83讲
- 五年级下册道德与法治-【说课稿】5 建立良好的公共秩序
- 内蒙古翁牛特旗达标名校2023-2024学年中考数学模拟预测题含解析
- 2020KET新题型官方模拟卷(读写部分答案)
- 绿色企业文化课件
- 脑梗塞后遗症护理查房
- 三年级上册数学教师家长会PPT
- 成都市院士(专家)创新工作站管理办法
- XX员工职业发展通道管理制度
- UT2级焊缝作业指导书
- 会议摄影技巧课件
- (完整版)检验批划分及验收计划方案(房建工程)
- 《科学家的故事》PPT课件.ppt
- 国家自然科学基金项目申报建议PPT课件
- 氩弧焊通用焊接工艺
- 综合实践活动六年级上册全册PPT.ppt
- 豇豆栽培技术PPT课件
评论
0/150
提交评论