专题40二项分布与正态分布(理科)(教师版)_第1页
专题40二项分布与正态分布(理科)(教师版)_第2页
专题40二项分布与正态分布(理科)(教师版)_第3页
专题40二项分布与正态分布(理科)(教师版)_第4页
专题40二项分布与正态分布(理科)(教师版)_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题40二项分布与正态分布(理科)(核心考点精讲精练)1.近几年真题考点分布概率与统计近几年考情考题示例考点分析关联考点2022年全国乙(文科),第4题,5分茎叶图计算平均数、中位数、概率2022年全国乙(文科),第14题,5分计数原理、排列、组合与概率2022年全国乙(理科),第10题,5分互斥事件、独立事件求概率2022年全国乙(理科),第13题,5分计数原理、排列、组合与概率2022年全国乙(理科),第19题,12分2022年全国乙(文科),第19题,12分(1)求平均数;(2)求相关系数(3)估算样本量2022年全国甲(文科),第17题,12分(1)求概率;(2)独立性检验2022年全国甲(文科),第6题,5分古典概型2022年全国甲(理科),第19题,12分(1)求概率;(2)离散型随机变量的分布列与数学期望2022年全国甲(理科),第15题,5分古典概型立体几何2022年全国甲(理科),第2题,5分2022年全国甲(文科),第2题,5分众数、平均数、中位数比较,求极差、方差、标准差2023年全国乙(文科),第9题,5分计数原理、排列、组合与概率2023年全国乙(理科),第5题,5分2023年全国乙(文科),第7题,5分几何概型圆环面积2023年全国乙(理科),第9题,5分计数原理与排列、组合2023年全国乙(理科),第17题,12分2023年全国乙(文科),第17题,12分(1)求样本平均数,方差;(2)统计新定义2023年全国甲(文科),第4题,5分计数原理、排列、组合与概率2023年全国甲(理科),第6题,5分条件概率2023年全国甲(理科),第9题,5分计数原理与排列、组合2023年全国甲(理科),第19题,12分(1)离散型随机变量的分布列与数学期望;(2)独立性检验2023年全国甲(文科),第20题,12分(1)求样本平均数;(2)独立性检验2.命题规律及备考策略【命题规律】1.二项分布与正态分布的关系主要在于当二项分布的足够大时,其成功次数和失败次数的概率分布可以近似为正态分布。通过正态分布的概率密度函数,可以计算出二项分布中成功的概率落在某个范围内的概率。因此,二项分布和正态分布在一定程度上是相关的;2.二项分布的分布律为,二项分布在不考虑其结果的顺序时,可用于对部分统计量的似然估计;【备考策略】1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.了解正态分布的概念,并能借助正态分布曲线进行简单应用.【命题预测】1.二项分布和正态分布是概率论中的重要概念,它们之间存在一定的关系。在二项分布中,每个试验只有两种可能的结果,即成功和失败,而在正态分布中,每个随机变量的取值都呈对称分布;2.对于二项分布和正态分布之间的命题预测,需要结合具体的问题背景和数据特征进行分析;知识讲解一、二项分布1.重伯努利试验的特征(1)同一个伯努利试验重复做次;(2)各次试验的结果相互独立.2.二项分布一般地,在重伯努利试验中,设每次试验中事件发生的概率为,用表示事件发生的次数,则的分布列为,.

如果随机变量的分布列具有上式的形式,那么称随机变量服从二项分布,记作X~B(n,p).

3.二项分布的期望、方差如果~,那么np,np(1p).

二、超几何分布1.超几何分布一般地,假设一批产品共有件,其中有件次品.从件产品中随机抽取件(不放回),用表示抽取的件产品中的次品数,则的分布列为,.

其中,,,.如果随机变量的分布列具有上式的形式,那么称随机变量服从超几何分布.2.超几何分布的期望设随机变量服从超几何分布,则.

三、正态分布1.正态分布函数,其中为参数,称为正态密度函数,的图象为正态密度曲线,简称正态曲线.若随机变量的概率分布密度函数为,则称随机变量服从正态分布,记作~.

特别地,当时,称随机变量服从标准正态分布.2.正态曲线的特点(1)曲线是单峰的,它关于直线对称;(2)曲线在处达到峰值;(3)当无限增大时,曲线无限接近轴.3.假设~,可以证明:对给定的,是一个只与有关的定值.特别地,(1)0.6827;

(2)0.9545;

(3)0.9973.

在实际应用中,通常认为服从于正态分布的随机变量只取中的值,这在统计学中称为原则.二项分布满足的条件1.每次试验中,同一事件发生的概率是相同的;2.各次试验中的事件是相互独立的;3.每次试验只有两种结果,即事件要么发生,要么不发生;4.随机变量是这n次独立重复试验中事件发生的次数.解此类题时常用互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.解决超几何分布问题的两个关键点(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆;(2)超几何分布中,只要知道就可以利用公式求出取不同的概率,从而求出的分布列.解决正态分布问题有三个关键点:(1)对称轴;(2)标准差;(3)分布区间.利用对称性可求指定范围内的概率值;由分布区间的特征进行转化,使分布区间转化为特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为.考点一、二项分布1.从一个装有4个白球和3个红球的袋子中有放回地取球5次,每次取球1个,记X为取得红球的次数,则(

)A. B. C. D.【答案】D【分析】先求出从袋子中取出一个红球的概率,进而得到,利用二项分布的方差公式进行求解.【详解】由题意得:从一个装有4个白球和3个红球的袋子中取出一个球,是红球的概率为,因为是有放回的取球,所以,所以.2.(2023年江苏省模拟数学试题)一盒子中有8个大小完全相同的小球,其中3个红球,4个白球,1个黑球.(1)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;(2)若从盒中有放回的取球3次,求取出的3个球中白球个数的分布列和数学期望.【答案】(1);(2)分布列见解析,数学期望为.【分析】(1)设事件“第一次取到红球”,事件“第二次取到红球”,求出,,再根据条件概率的概率公式计算可得;(2)依题意服从二项分布,的可能取值为0、1、2、3,求出所对应的概率,列出分布列,求出数学期望即可.【详解】(1)设事件A=“第一次取到红球”,事件B=“第二次取到红球”,由于是不放回地从盒中连续取两次球,每次取一个,所以第一次取球有8种方法,第二次取球是7种方法,一共的基本事件数是56,由于第一次取到红球有3种方法,第二次取球是7种方法,,一次取到红球有3种方法,第二次取到红球有2种方法,,;(2)由题可知白球个数,且有,,故的分布列为:0123所以的数学期望为:.3.2022年冬奥会在北京举行,冬奥会吉祥物“冰墩墩”自亮相以来就好评不断,出现了“一墩难求”的现象.主办方现委托某公司推出一款以“冰墩墩”为原型的纪念品在专卖店进行售卖.已知这款纪念品的生产成本为80元/件,为了确定其销售价格,调查了对这款纪念品有购买意向的消费者(以下把对该纪念品有购买意向的消费者简称为消费者)的心理价位,并将收集的100名消费者的心理价位整理如下:心理价位(元/件)90100110120人数10205020x(单位:元/件),,且每位消费者是否购买该纪念品相互独立.用样本的频率分布估计总体的分布,频率视为概率.(1)若,试估计消费者购买该纪念品的概率;已知某时段有4名消费者进店,X为这一时段该纪念品的购买人数,试求X的分布列和数学期望;(2)假设共有M名消费者,设该公司售卖这款纪念品所得总利润为Y(单位:元),当该纪念品的销售价格x定为多少时,Y的数学期望达到最大值?【答案】(1)分布列见解析,期望为3.6;(2)当该纪念品的销售价格定为110元多少时,Y的数学期望达到最大值.【分析】(1)由调查表得出每个人购买纪念品的概念为,而,由二项分布计算概率的分布列,由二项分布的期望公式得期望;(2)利用二项分布的期望公式求出时的期望,比较得最大值.【详解】(1)时,消费者购买该纪念品的概率,由题意,,,,同理,,,,的分布列为:01234;(2)由(1)知时,(时等号成立),时,(时等号成立),时,(时等号成立),,因此最大,此时.所以当该纪念品的销售价格定为110元多少时,Y的数学期望达到最大值.4.(2023届广东省模拟数学试题)某商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中放10个大小相同的小球,其中5个为红色,5个为白色.抽奖方式为:每名顾客进行两次抽奖,每次抽奖从抽奖箱中一次性摸出两个小球.如果每次抽奖摸出的两个小球颜色相同即为中奖,两个小球颜色不同即为不中奖.(1)若规定第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,求中奖次数的分布列和数学期望.(2)若规定第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,求中奖次数的分布列和数学期望.(3)如果你是商场老板,如何在上述问两种抽奖方式中进行选择?请写出你的选择及简要理由.【答案】(1)分布列答案见解析,数学期望:;(2)分布列答案见解析,数学期望:;(3)答案见解析;【分析】(1)根据古典概型的运算公式,结合二项分布的性质进行求解即可;(2)根据古典概型的运算公式,结合数学期望公式进行求解即可;(3)根据数学期望的性质,结合商场老板希望进行判断即可.【详解】(1)若第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,则每次中奖的概率为,因为两次抽奖相互独立,所以中奖次数服从二项分布,即,所以的所有可能取值为,则,所以的分布列为012所以的数学期望为.(2)若第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,中奖次数的所有可能取值为,则,,,所以的分布列为012所以的数学期望为.(3)因为(1)(2)两问的数学期望相等,第(1)问中两次奖的概率比第(2)问的小,即,第(1)不中奖的概率比第问小,即,回答一:若商场老板希望中两次奖的顾客多,产生宣传效应,则选择按第(2)问方式进行抽.回答二:若商场老板希望中奖的顾客多,则选择按第(1)问方式进行抽奖.1.排球比赛实行“五局三胜制”,根据此前的若干次比赛数据统计可知,在甲、乙两队的比赛中,每场比赛甲队获胜的概率为,乙队获胜的概率为,则在这场“五局三胜制”的排球赛中乙队获胜的概率为(

)A. B. C. D.【答案】C【分析】乙队获胜可分为乙队以或或的比分获胜.然后分别求出各种情况的概率,加起来即可;也可以构建二项分布模型解决.【详解】解法一:乙队获胜可分为乙队以或或的比分获胜.乙队以获胜,即乙队三场全胜,概率为;乙队以获胜,即乙队前三场两胜一负,第四场获胜,概率为;乙队以获胜,即乙队前四场两胜两负,第五场获胜,概率为.所以,在这场“五局三胜制”的排球赛中乙队获胜的概率为.解法二:采用五局三胜制,不妨设赛满5局,用表示5局比赛中乙胜的局数,则.乙最终获胜的概率为.2.在一次以“二项分布的性质”为主题的数学探究活动中,金陵中学高二某小组的学生表现优异,发现的正确结论得到老师和同学们的一致好评.设随机变量,记,,1,2,…,n.在研究的最大值时,该小组同学发现:若为正整数,则时,,此时这两项概率均为最大值;若为非整数,当k取的整数部分,则是唯一的最大值.以此为理论基础,有同学重复投掷一枚质地均匀的骰子并实时记录点数1出现的次数,当投掷到第35次时,记录到此时点数1出现5次,若继续再进行65次投掷试验,则当投掷到第100次时,点数1一共出现的次数为的概率最大.【答案】15或16【分析】根据二项分布的知识,结合题目所给条件进行计算,从而求得正确答案.【详解】继续再进行65次投掷实验,出现点数为1的次数X服从二项分布,由,结合题中的结论可知,当或时概率最大.即后面65次中出现11或10次点数1的概率最大,加上前面35次中的5次.所以出现15或16次的概率最大.3.某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成.规定:至少正确完成其中道题便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.(1)求甲恰好正确完成两个面试题的概率;(2)求乙正确完成面试题数的分布列及其期望.【答案】(1);(2)分布列见解析,;【分析】(1)设甲正确完成面试的题数为,则的取值范围是.然后求出即可;(2)设乙正确完成面试的题数为,则取值范围是,求出取每个值时的概率,即可得分布列,然后根据二项分布期望的求法求解即可.【详解】(1)解:由题意得:设甲正确完成面试的题数为,则的取值范围是.;(2)设乙正确完成面试的题数为,则取值范围是.,,,.应聘者乙正确完成题数的分布列为.4.(2023届辽宁省模拟调研卷数学试题)近年来,我国加速推行垃圾分类制度,全国垃圾分类工作取得积极进展.某城市推出了两套方案,并分别在A,B两个大型居民小区内试行.方案一:进行广泛的宣传活动,通过设立宣传点、发放宣传单等方式,向小区居民和社会各界宣传垃圾分类的意义,讲解分类垃圾桶的使用方式,垃圾投放时间等,定期召开垃圾分类会议和知识宣传教育活动;方案二:智能化垃圾分类,在小区内分别设立分类垃圾桶,垃圾回收前端分类智能化,智能垃圾桶操作简单,居民可以通过设备进行自动登录、自动称重、自动积分等一系列操作.建立垃圾分类激励机制,比如,垃圾分类换积分,积分可兑换礼品等,激发了居民参与垃圾分类的热情,带动居民积极主动地参与垃圾分类.经过一段时间试行之后,在这两个小区内各随机抽取了100名居民进行问卷调查,记录他们对试行方案的满意度得分(满分100分),将数据分成6组:并整理得到如下频率分布直方图:(1)请通过频率分布直方图分别估计两种方案满意度的平均得分,判断哪种方案的垃圾分类推广措施更受居民欢迎(同一组中的数据用该组中间的中点值作代表);(2)估计A小区满意度得分的第80百分位数;(3)以样本频率估计概率,若满意度得分不低于70分说明居民赞成推行此方案,低于70分说明居民不太赞成推行此方案.现从B小区内随机抽取5个人,用X表示赞成该小区推行方案的人数,求X的分布列及数学期望.【答案】(1)方案一,二的满意度平均得分分别为72.6,76.5,且方案二的措施更受居民欢迎;(2)第80百分位数为85分;(3)分布列见解析,4.【分析】(1)由频率分布直方图计算平均数即可;(2)根据百分位数的计算方法进行计算即可;(3)由题意可得X满足二项分布,然后进行求解分布列和期望.【详解】(1)设A小区方案一的满意度平均分为,则,设B小区方案二的满意度平均分为,则,因为,所以方案二的垃圾分类推行措施更受居民欢迎;(2)因为前4组的频率之和为,前5组的频率之和为,所以第80百分位数在第5组,设第80百分位数为x,则,解得,所以A小区满意度得分的第80百分位数为85分;(3)由题意可知方案二中,满意度不低于70分的频率为,低于70分的频率为,现从B小区内随机抽取5个人,则,X的所有可能取值为0,1,2,3,4,5,,,,,,,所以X的分布列为X012345P由二项分布知数学期望.考点二、超几何分布1.从一批含有13件正品,2件次品的产品中不放回地抽3次,每次抽取1件,设抽取的次品数为ξ,则E(5ξ+1)=()A.2 B.1 C.3 D.4【答案】C【分析】根据古典概型概率计算方法,求出ξ的分布列,并求出,则.【详解】的可能取值为.,,.∴的分布列为:ξ012P于是,故.2.在一个袋中装有质地大小一样的6个黑球,4个白球,现从中任取4个小球,设取的4个小球中白球的个数为X,则下列结论正确的是(

)A. B.随机变量服从二项分布C.随机变量服从超几何分布 D.【答案】C【分析】由题意知随机变量服从超几何分布,利用超几何分布的性质直接判断各选项即可.【详解】解:由题意知随机变量服从超几何分布,故B错误,C正确;的取值分别为0,1,2,3,4,则,,,,,,故A,D错误.3.4月23日是联合国教科文组织确定的“世界读书日”.为了解某地区高一学生阅读时间的分配情况,从该地区随机抽取了500名高一学生进行在线调查,得到了这500名学生的日平均阅读时间(单位:小时),并将样本数据分成,,,,,,,,九组,绘制成如图所示的频率分布直方图.(1)从这500名学生中随机抽取一人,日平均阅读时间在内的概率;(2)为进一步了解这500名学生数字媒体阅读时间和纸质图书阅读时间的分配情况,从日平均阅读时间在,,三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人,记日平均阅读时间在内的学生人数为X,求X的分布列和数学期望;(3)以样本的频率估计概率,从该地区所有高一学生中随机抽取10名学生,用表示这10名学生中恰有k名学生日平均阅读时间在内的概率,其中,1,2,…,10.当最大时,写出k的值.(只需写出结论);(2)的分布列见解析,数学期望为;(3)5;【分析】(1)由频率分布直方图列出方程,能求出的值,进而估计出概率;(2)先按比例抽取人数,由题意可知此分布列为超几何分布,即可求出分布列;(3)求出的式子进行判断.【详解】(1)由频率分布直方图得:,解得,,所以日平均阅读时间在内的概率为0.20;(2)由频率分布直方图得:这500名学生中日平均阅读时间在,,,,,三组内的学生人数分别为:人,人,人,若采用分层抽样的方法抽取了10人,则从日平均阅读时间在,内的学生中抽取:人,现从这10人中随机抽取3人,则的可能取值为0,1,2,3,,,,,的分布列为:0123数学期望.(3),理由如下:由频率分布直方图得学生日平均阅读时间在内的概率为0.50,从该地区所有高一学生中随机抽取10名学生,恰有k名学生日平均阅读时间在内的分布列服从二项分布,,由组合数的性质可得时最大.1.有20个零件,其中16个一等品,4个二等品,若从这些零件中任取3个,那么至少有1个是一等品的概率是(

).A. B. C. D.【答案】D【分析】根据题意得都是二等品的概率为,求解计算即可.【详解】全部都是二等品的概率为,故至少有1个是一等品的概率为.2.(2023届湖北省联考数学试题)某数学兴趣小组为研究本校学生数学成绩与语文成绩的关系,采取有放回的简单随机抽样,从学校抽取样本容量为200的样本,将所得数学成绩与语文成绩的样本观测数据整理如下:语文成绩合计优秀不优秀数学成绩优秀503080不优秀4080120合计90110200(1)根据的独立性检验,能否认为数学成绩与语文成绩有关联?(2)在人工智能中常用表示在事件发生的条件下事件发生的优势,在统计中称为似然比.现从该校学生中任选一人,表示“选到的学生语文成绩不优秀”,表示“选到的学生数学成绩不优秀”请利用样本数据,估计的值.(3)现从数学成绩优秀的样本中,按分层抽样的方法选出8人组成一个小组,从抽取的8人里再随机抽取3人参加数学竞赛,求这3人中,语文成绩优秀的人数的概率分布列及数学期望.附:【答案】(1)认为数学成绩与语文成绩有关;(2);(3)分布列见解析,.【分析】(1)零假设后,计算的值与比较即可;(2)根据条件概率公式计算即可;(3)分层抽样后运用超几何分布求解.【详解】(1)零假设:数学成绩与语文成绩无关.据表中数据计算得:根据小概率值的的独立性检验,我们推断不成立,而认为数学成绩与语文成绩有关;(2)∵,∴估计的值为;(3)按分层抽样,语文成绩优秀的5人,语文成绩不优秀的3人,随机变量的所有可能取值为.,,,,∴的概率分布列为:0123∴数学期望.3.(2023年北京市模拟数学试题)地区期末进行了统一考试,为做好本次考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中的值;(2)在这50名学生中用分层抽样的方法从成绩在的三组中抽取了11人,再从这11人中随机抽取3人,记为3人中成绩在的人数,求的分布列和数学期望;(3)转化为百分制后,规定成绩在的为A等级,成绩在的为B等级,其它为C等级.以样本估计总体,用频率代替概率.从所有参加考试的同学中随机抽取3人,求获得等级的人数不少于2人的概率.【答案】(1);(2)分布列见解析,数学期望为;(3).【分析】(1)根据频率和为列方程计算求解;(2)由分层抽样判断得抽取的成绩在的三组人数为,根据超几何分布计算取对应的概率,从而写出分布列并计算期望;(3)根据频率分布直方图判断出成绩为A,B,C等级的频率分别为,可判断出从所有参加考试的同学中随机抽取3人,获得B等级的人数服从二项分布,利用二项分布计算获得B等级的人数不少于2人的概率.【详解】(1)由频率和为可得,解得.(2)由频率分布直方图可得,成绩在的三组人数比为,根据分层抽样抽取的成绩在的三组人数为,所以的可能取值为.,,,所以的分布列为(3)由题意,成绩为A,B,C等级的频率分别为,设从所有参加考试的同学中随机抽取3人,获得B等级的人数为,则服从二项分布,所以获得B等级的人数不少于2人的概率为考点三、正态分布1.(2021年全国新高考II卷数学试题)某物理量的测量结果服从正态分布,下列结论中不正确的是(

)A.越小,该物理量在一次测量中在的概率越大D.该物理量在一次测量中落在与落在的概率相等【答案】D【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.2.(2023届高三冲刺卷(一)全国卷理科数学试题)某班学生的一次的数学考试成绩(满分:100分)服从正态分布:,且,,(

)【答案】C【分析】根据正态分布的对称性计算即可.【详解】因为,,所以,又,所以.3.(2023届山东省模拟数学试题)某学校共1000人参加数学测验,考试成绩近似服从正态分布,若,则估计成绩在120分以上的学生人数为(

)A.25 B.50 C.75 D.100【答案】B【分析】由已知可得,根据正态分布的对称性可推得,即可得出答案.【详解】由已知可得,,所以.又,根据正态分布的对称性可得,所以.所以,可估计成绩在120分以上的学生人数为.4.(2023届山西省模拟数学试题)某市为了传承发展中华优秀传统文化,组织该市中学生进行了一次文化知识有奖竞赛,竞赛奖励规则如下:得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获得一等奖,其他学生不得奖,为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,并以此为样本绘制了样本频率分布直方图,如图所示.(1)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;(2)若该市所有参赛学生的成绩X近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:(i)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);(ii)若从所有参赛学生中(参赛学生数大于10000)随机取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和期望.附参考数据,若随机变量X服从正态分布,则,,.【答案】(1);(2)(i)1587;(ii)分布列见解析,数学期望为.【分析】(1)根据样本频率分布直方图确定获奖人数,再求得从该样本中随机抽取的两名学生的竞赛成绩基本事件总数,与“抽取的两名学生中恰有一名学生获奖”情况数,利用古典概型计算概率即可;(2)由样本频率分布直方图得,求解样本平均数的估计值,即可得正泰分布的均值,按照正态分布的性质求解参赛学生中成绩超过79分的学生数;由样本估计总体可知随机变量服从二项分布,根据二项分布确定概率分布列与数学期望即可.【详解】(1)由样本频率分布直方图得,样本中获一等奖的有6人,获二等奖的有8人,获三等奖的有16人,共有30人获奖,70人没有获奖.从该样本中随机抽取的两名学生的竞赛成绩,基本事件总数为,设“抽取的两名学生中恰有一名学生获奖”为事件A,则事件A包含的基本事件的个数为,因为每个基本事件出现的可能性都相等,所以,即抽取的两名学生中恰有一名学生获奖的概率为.(2)由样本频率分布直方图得,样本平均数的估计值,则所有参赛学生的成绩X近似服从正态分布.(ⅰ)因为,所以.故参赛学生中成绩超过79分的学生数为.(ⅱ)由,得,即从所有参赛学生中随机抽取1名学生,该生竞赛成绩在64分以上的概率为.所以随机变量服从二项分布,所以,,,.所以随机变量的分布列为:0123P均值.1.(2023年山东省联考数学试题)设随机变量,且,则(

)A. B. C. D.【答案】A【分析】由题知,,进而根据正态分布的对称性求解即可.【详解】解:因为随机变量,所以,因为,所以,所以,根据正态分布的对称性,.2.(2023届江苏省调研测试数学试题)已知随机变量服从正态分布,有下列四个命题:甲:;乙:;丙:;丁:如果只有一个假命题,则该命题为(

)A.甲 B.乙 C.丙 D.丁【答案】D【分析】根据正态曲线的对称性可判定乙、丙一定都正确,继而根据正态曲线的对称性可判断甲和丁,即得答案.【详解】因为只有一个假命题,故乙、丙只要有一个错,另一个一定错,不合题意,所以乙、丙一定都正确,则,故甲正确,根据正态曲线的对称性可得,故丁错.3.(2023届山东省模拟考试数学试题)新能源汽车具有零排放、噪声小、能源利用率高等特点,近年来备受青睐.某新能源汽车制造企业为调查其旗下A型号新能源汽车的耗电量(单位:kW·h/100km)情况,随机调查得到了1200个样本,据统计该型号新能源汽车的耗电量,若,则样本中耗电量不小于的汽车大约有(

)A.180辆 B.360辆 C.600辆 D.840辆【答案】A【分析】根据正态分布的性质,求得的值,再由样本容量求得频数,即可得到答案.【详解】因为,且,所以,所以样本中耗电量不小于的汽车大约(辆).【基础过关】2023年10月09日二项分布一、单选题1.已知随机变量,,且,,则(

)A. B. C. D.【答案】B【分析】根据随机变量可知,再根据,,可求出,利用,建立方程,即可求出结果.【详解】因为随机变量,所以,因为,,所以,即,又.所以,即.2.乒乓球被称为我国的国球,是一种深受人们喜爱的球类体育项目.某次乒乓球比赛中,比赛规则如下:比赛以11分为一局,采取七局四胜制.在一局比赛中,先得11分的选手为胜方;如果比赛一旦出现10平,先连续多得2分的选手为胜方.(1)假设甲选手在每一分争夺中得分的概率为.在一局比赛中,若现在甲、乙两名选手的得分为8比8平,求这局比赛甲以先得11分获胜的概率;(2)假设甲选手每局获胜的概率为,在前三局甲获胜的前提下,记X表示到比赛结束时还需要比赛的局数,求X的分布列及数学期望.【答案】(1);(2)X1234p数学期望为.【分析】(1)分析出两种情况,甲乙再打3个球,这三个均为甲赢和甲乙再打4个球,其中前三个球甲赢两个,最后一个球甲赢,分别求出概率,相加即为结果;(2)求出X的可能取值为1,2,3,4,及对应的概率,写出分布列,求出期望值.【详解】(1)设这局比赛甲以先得11分获胜为事件A,则事件A中包含事件B和事件C,事件B:甲乙再打3个球,甲先得11分获胜,事件C:甲乙再打4个球,甲先得11分获胜.事件B:甲乙再打3个球,这三个球均为甲赢,则,事件C:甲乙再打4个球,则前三个球甲赢两个,最后一个球甲赢,则;则(2)X的可能取值为1,2,3,4.,,,,所以X的分布列为:X1234p其中.即数学期望为.3.某公司开发了一款应用软件,为了解用户对这款软件的满意度,推出该软件3个月后,从使用该软件的用户中随机抽查了1000名,将所得的满意度的分数分成7组:,整理得到如下频率分布直方图.根据所得的满意度的分数,将用户的满意度分为两个等级:满意度的分数满意度的等级不满意满意(1)从使用该软件的用户中随机抽取1人,估计其满意度的等级为“满意”的概率;(2)用频率估计概率,从使用该软件的所有用户中随机抽取2人,以X表示这2人中满意度的等级为“满意”的人数,求X的分布列和数学期望.【答案】(1);(2)分布列见解析,期望为;【分析】(1)根据频率分布直方图求出在与的频率,即可得到概率;(2)依题意,则的可能取值为、、,求出所对应的概率,列出分布列,求出数学期望即可;【详解】解:(1)由频率分布直方图可知满意度的分数的频率为,满意度的分数的频率为,故从使用该软件的用户中随机抽取1人,其满意度的等级为“满意”的概率为(2)依题意可知,则的可能取值为、、,所以,,所以的分布列为:所以.4.某公司采购部需要采购一箱电子元件,供货商对该电子元件整箱出售,每箱10个.在采购时,随机选择一箱并从中随机抽取3个逐个进行检验.若其中没有次品,则直接购买该箱电子元件;否则,不购买该箱电子元件.(1)若某箱电子元件中恰有一个次品,求该箱电子元件能被直接购买的概率;(2)若某箱电子元件中恰有两个次品,记对随机抽取的3个电子元件进行检测的次数为,求的分布列及期望.【答案】(1);(2)分布列答案见解析,数学期望:.【分析】(1)依题意,利用古典概型的公式计算求解;(2)利用概率的乘法计算每一个随机变量取值的概率,再求数学期望.【详解】(1)设某箱电子元件有一个次品能被直接购买为事件A.则;(2)可能取值为,则;,故的分布列是故.5.(2023年北京市质量监测与反馈数学试题)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,白粽8个,这两种粽子的外观完全相同,从中任意选取3个.(1)求既有豆沙粽又有白粽的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.【答案】(1);(2)分布列详见解析,数学期望为;【分析】(1)根据古典概型以及组合数的计算求得正确答案.(2)根据超几何分布的知识求得的分布列并求得数学期望.【详解】(1)依题意,既有豆沙粽又有白粽的概率为.(2)的可能取值为,则,,,所以的分布列如下:所以.6.(2023届云南省模拟数学试题)在某校举办“青春献礼二十大,强国有我新征程”的知识能力测评中,随机抽查了100名学生,其中共有4名女生和3名男生的成绩在90分以上,从这7名同学中每次随机抽1人在全校作经验分享,每位同学最多分享一次,记第一次抽到女生为事件A,第二次抽到男生为事件B.(1)求,,(2)若把抽取学生的方式更改为:从这7名学生中随机抽取3人进行经验分享,记被抽取的3人中女生的人数为X,求X的分布列和数学期望.【答案】(1),(2)分布列见解析;期望为【分析】(1)法一:根据古典概型结合条件概率运算求解;法二:根据独立事件概率乘法公式结合条件概率运算求解;(2)根据题意结合超几何分布求分布列和期望.【详解】(1)方法一:由题意可得:,“第一次抽到女生且第二次抽到男生”就是事件AB:“第一次抽到男生且第二次抽到男生”就是事件,从7个同学中每次不放回地随机抽取2人,试验的样本空间Ω包含个等可能的样本点,因为,,所以,故.方法二:,“在第一次抽到女生的条件下,第二次抽到男生”的概率就是事件A发生的条件下,事件B发生的概率,则,,故.(2)被抽取的3人中女生人数X的取值为0,1,2,3,,,,,X的分布列:X0123PX的数学期望.7.“双减”政策实施后,为了解某地中小学生周末体育锻炼的时间,某研究人员随机调查了600名学生,得到的数据统计如下表所示:周末体育锻炼时间频率(1)估计这600名学生周末体育锻炼时间的平均数;(同一组中的数据用该组区间的中点值作代表)(2)在这600人中,用分层抽样的方法,从周末体育锻炼时间在内的学生中抽取15人,再从这15人中随机抽取3人,记这3人中周末体育锻炼时间在内的人数为X,求X的分布列以及数学期望.【答案】(1);(2)分布列答案见解析,数学期望:.【分析】(1)根据平均数的定义,等于频率乘以每一组数据的中点值之和;(2)根据题意,X的可能取值是0,1,2,3,再根据古典概型计算方法分别计算概率即可.【详解】(1)估计这600名学生周末体育锻炼时间的平均数.(2)依题意,周末体育锻炼时间在内的学生抽6人,在内的学生抽9人,则,,,,故X的分布列为:X0123P则.8.某学校在寒假期间安排了“垃圾分类知识普及实践活动”.为了解学生的学习成果,该校从全校学生中随机抽取了100名学生作为样本进行测试,记录他们的成绩,测试卷满分100分,并将得分分成以下6组:、、、…、,统计结果如图所示:(1)试估计这100名学生得分的平均数;(2)从样本中得分不低于70分的学生中,用分层抽样的方法选取11人进行座谈,若从座谈名单中随机抽取3人,记其得分在的人数为,试求的分布列和数学期望;(3)以样本估计总体,根据频率分布直方图,可以认为参加知识竞赛的学生的得分X近似地服从正态分布,其中近似为样本平均数,近似为样本方差,经计算.所有参加知识竞赛的2000名学生中,试问得分高于77分的人数最有可能是多少?参考数据:,,.【答案】(1);(2)分布列见解析,;(3);【详解】(1)解:由频率分布直方图可得这100名学生得分的平均数.(2)解:参加座谈的11人中,得分在的有人,所以的可能取值为,,,所以,,.所以的分布列为012∴.(3)解:由(1)知,,所以.得分高于77分的人数最有可能是.9.一个袋中装有5个形状大小完全相同的小球,其中红球有2个,白球有3个,从中任意取出3个球.(1)求取出的3个球恰有一个红球的概率;(2)若随机变量X表示取得红球的个数,求随机变量X的分布列.【答案】(1);(2)分布列见解析.【分析】设出事件,利用超几何分布求概率公式进行求解;(2)写出随机变量X的可能取值及相应的概率,求出分布列.【详解】(1)设取出的3个球恰有一个红球为事件A,则(2)随机变量X可能取值为0,1,2,,,,故X的分布列为:X012P10.某公司全年圆满完成预定的生产任务,为答谢各位员工一年来的锐意进取和辛勤努力,公司决定在联欢晚会后,拟通过摸球兑奖的方式对500位员工进行奖励,规定:每位员工从一个装有4种面值的奖券的箱子中,一次随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.(1)若箱子中所装的4种面值的奖券中有1张面值为80元,其余3张均为40元,试比较员工获得80元奖励额与获得120元奖励额的概率的大小;(2)公司对奖励总额的预算是6万元,预定箱子中所装的4种面值的奖券有两种方案:第一方案是2张面值20元和2张面值100元;第二方案是2张面值40元和2张面值80元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.【答案】(1)员工获得80元奖励额与获得120元奖励额的概率相等(2)应选择第二种方案;理由见解析【分析】(1)根据超几何分布求出员工获得80元奖励额与获得120元奖励额的概率即可;(2)根据题意可知有两种方案、,分别求出对应的分布列,进而求出对应的数学期望和方差,从而得出结论.【详解】(1)用X表示员工所获得的奖励额.因为,,所以,故员工获得80元奖励额与获得120元奖励额的概率相等.(2)第一种方案为,设员工所获得的奖励额为,则的分布列为40120200P所以的数学期望为,的方差为;第二种方案为,设员工所获得的奖励额为,则的分布列为80120160P所以的数学期望为,的方差为,又因为(元),所以两种方案奖励额的数学期望都符合要求,但第二种方案的方差比第一种方案的小,故应选择第二种方案.11.一次性医用口罩是适用于覆盖使用者的口、鼻及下颌,用于普通医疗环境中佩戴、阻隔口腔和鼻腔呼出或喷出污染物的一次性口罩,按照我国医药行业标准,口罩对细菌的过滤效率达到95%及以上为合格,98%及以上为优等品,某部门为了检测一批口置对细菌的过滤效率.随机抽检了200个口罩,将它们的过滤效率(百分比)按照[95,96),[96,97),[97,98),[98,99),[99,100]分成5组,制成如图所示的频率分布直方图.(1)求图中m的值并估计这一批口罩中优等品的概率;(2)为了进一步检测样本中优等品的质量,用分层抽样的方法从[98,99)和[99,100]两组中抽取7个口罩,再从这7个口罩中随机抽取3个口罩做进一步检测,记取自[98,99)的口罩个数为X,求X的分布列与期望.;(2)分布列见解析,;【分析】(1)根据频率之和等于1可得m,然后直接计算优等品的概率即可;(2)先由分层抽样取得各层样板个数,然后由超几何分布计算可得.(1)由图可知估计这一批口罩中优等品的概率为(2)因为,所以从[98,99)中抽取个,从[99,100]中抽取个.则X的可能取值为1,2,3,且故X的分布列为X123P.12.(2023届湖北省联合统一调研测试数学试题)某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试.为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示.(1)根据频率分布直方图,试求样本平均数的估计值;(2)若所有考生的初试成绩X近似服从正态分布,其中为样本平均数的估计值,,试估计初试成绩不低于88分的人数;(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响.记该考生的复试成绩为Y,求Y的分布列及均值.附:若随机变量X服从正态分布,则:,,.【答案】(1)(2)人(3)分布列见解析,均值为【分析】(1)根据频率分布直方图的平均数的估算公式即可求解;(2)由可知即可求解;(3)根据题意确定Y的取值分别为0,5,10,15,20,25,利用独立性可求得分布列,进而求得均值.【详解】(1)样本平均数的估计值为.(2)因为学生初试成绩X服从正态分布,其中,,则,所以,所以估计初试成绩不低于88分的人数为人.(3)Y的取值分别为0,5,10,15,20,25,则,,,,,,故Y的分布列为:Y0510152025P所以数学期望为.13.春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为了解春节期间车辆出行的高峰情况,在某高速收费点发现大年初三上午9:20~10:40这一时间段内有600辆车通过,将其通过该收费点的时刻绘成频率分布直方图.其中时间段9:20~9:40记作区间,9:40~10:00记作,10:00~10:20记作,10:20~10:40记作,例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,记X为9:20~10:00之间通过的车辆数,求X的分布列与数学期望;(3)由大数据分析可知,车辆在春节期间每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).参考数据:若,则,,.【答案】(1)(2)分布列见解析,(3)【分析】(1)将直方图中每个小长方形的中点横坐标作为该组数据的代表值,频率作为权重,加权平均即可.(2)抽样比为,计算出各区间抽取的车辆数,找到随机变量的所有可能的取值,计算出每个对应的概率,列分布列,求期望即可.(3)根据频率分布直方图估计出方差,再结合(1)求出的期望,得到,再根据其对称性处理即可.【详解】(1)解:这600辆车在时间段内通过该收费点的时刻的平均值为,即(2)解:结合频率分布直方图和分层抽样的方法可知,抽取的10辆车中,在前通过的车辆数就是位于时间分组中在,这一区间内的车辆数,即,所以的可能的取值为0,1,2,3,4.所以,,,,,所以的分布列为:01234所以.(3)由(1)得,,所以,估计在之间通过的车辆数也就是在,通过的车辆数,由,,得,所以估计在之间通过的车辆数为辆.14.某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试.现对测试数据进行分析,得到如图所示的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表);(2)经计算第(1)问中样本标准差的近似值为50,根据大量的测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布(用样本平均数和标准差分别作为的近似值),现任取一辆汽车,求它的单次最大续航里程的概率;(参考数据:若随机变量,则,(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上(方格图上依次标有数字0、1、2、3、……、20)移动,若遥控车最终停在“胜利大本营”(第19格),则可获得购车优惠券3万元;若遥控车最终停在“微笑大本营”(第20格),则没有任何优优惠券.已知硬币出现正、反面的概率都是,遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次:若掷出正面,遥控车向前移动一格(从到;若掷出反面,遥控车向前移动两格(从到格的概率为,试证明是等比数列,并求参与游戏一次的顾客获得优惠券全额的期望值(精确到万元).【答案】(1);(2);(3)证明见解析,参与游戏一次的顾客获得优惠券金额的期望值为万元.【分析】(1)利用直方图求平均值的公式即得;(2)利用正态分布的性质求解即可;(3)由题可得,利用定义证明其为等比数列,结合累加法得出的表达式,由此得到,,设参与游戏一次的顾客获得优惠券金额为万元,或0,分别求出或0的概率,然后求出期望即可.【详解】(1)估计这100辆汽车的单次最大续航里程的平均值为:;(2)∵,∴.(3)由题可知,遥控车移到第格有两种可能:①遥控车先到第格,又掷出反面,其概率为;②遥控车先到第格,又掷出正面,其概率为,∴,∴时,,又∵,∴当时,数列首项为,公比为的等比数列,∴,以上各式相加,得,∴时,,∴到达“胜利大本营”的概率,∴设参与游戏一次的顾客获得优惠券金额为万元,则或0,∴的期望,∴参与游戏一次的顾客获得优惠券金额的期望值为万元15.冬奥会的成功举办极大鼓舞了人们体育强国的热情,掀起了青少年锻炼身体的热潮.某校为了解全校学生“体能达标”的情况,从高三年级1000名学生中随机选出40名学生参加“体能达标”测试,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为合格.若高三年级“不合格”的人数不超过总人数的5%,则该年级体能达标为“合格”;否则该年级体能达标为“不合格”,需要重新对高三年级学生加强训练.现将这40名学生随机分成甲、乙两个组,其中甲组有24名学生,乙组有16名学生.经过预测后,两组各自将预测成绩统计分析如下:甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6.(数据的最后结果都精确到整数)(1)求这40名学生测试成绩的平均分和标准差s;(2)假设高三学生的体能达标预测成绩服从正态分布N(μ,),用样本平均数作为μ的估计值,用样本标准差s作为的估计值.利用估计值估计,高三学生体能达标预测是否“合格”;,求王强在这轮比赛中所得积分为3分的条件下,他前3局比赛都获胜的概率.附:①n个数的方差;②若随机变量Z~N(μ,),则,,.【答案】(1),;(2)合格;(3).【分析】(1)根据平均数、方差、标准差的计算公式进行求解即可;(2)根据题中所给的公式进行求解即可;(3)根据独立事件和条件概率的公式进行求解即可.【详解】(1),第一组学生的方差为;解得;第二组学生的方差为;解得.这40名学生的方差为,所以;(2)由,,得的估计值,的估计值.,∴.从而高三年级1000名学生中,不合格的有(人),又,所以高三年级学生体能达标为“合格”;(3)设王强在这轮比赛得3分为事件A,他以的比分获胜为事件,他以的比分获胜为事件.则,;所以,设王强前3局比赛获胜的事件为B,则,所以.16.为调查禽类某种病菌感染情况,某养殖场每周都定期抽样检测禽类血液中指标的检测数据进行整理,绘成如下频率分布直方图(1)根据频率分布直方图,估计这5000只家禽血液样本中指标值的中位数(结果保留两位小数);(2)通过长期调查分析可知,该养殖场家禽血液中指标的值服从正态分布(i)若其中一个养殖棚有1000只家禽,估计其中血液指标的值不超过的家禽数量(结果保留整数);(ii)在统计学中,把发生概率小于的事件称为小概率事件,通常认为小概率事件的发生是不正常的.该养殖场除定期抽检外,每天还会随机抽检20只,若某天发现抽检的20只家禽中恰有3只血液中指标的值大于,判断这一天该养殖场的家禽健康状况是否正常,并分析说明理由.参考数据:①;②若,则;(2)(i)841;(ii)不正常,理由见解析.【分析】(1)先判断中位数所在区间,再设出中位数,利用中位数左侧频率和为0.5求解即可;(2)(i)由正态分布的对称性及特殊区间的概率求得,再计算家禽数量即可;(ii)先求出,再由独立重复实验的概率公式求出恰有3只血液中指标的值大于的概率,和比较作出判断即可.【详解】(1)由可得中位数在区间内,设中位数为,则,解得;(2)(i)由可得,则,只;(ii),,随机抽检20只相当于进行20次独立重复实验,设恰有3只血液中指标的值大于为事件,则,所以这一天该养殖场的家禽健康状况不正常.17.(2023届广东省模拟数学试题)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:),经统计得到下面的频率分布直方图:(1)由频率分布直方图估计抽检样本关键指标的平均数和方差.(用每组的中点代表该组的均值)(2)已知这台设备正常状态下生产零件的关键指标服从正态分布,用直方图的平均数估计值作为的估计值,用直方图的标准差估计值s作为估计值.(i)为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:利用和判断该生产周期是否需停止生产并检查设备.(ii)若设备状态正常,记X表示一个生产周期内抽取的10个零件关键指标在之外的零件个数,求及X的数学期望.参考公式:直方图的方差,其中为各区间的中点,为各组的频率.参考数据:若随机变量X服从正态分布,则,,,,.【答案】(1)(2)(i)需停止生产并检查设备;(ii),【分析】(1)根据频率分布直方图结合平均数的计算公式,即可求得,继而结合方差的计算公式求得;(2)(i)根据,,确定,,判断抽查的零件关键指标有无在之外的情况,即可得结论;(ii)求出抽测一个零件关键指标在之外的概率,确定,根据二项分布的概率公式以及期望公式,即可求得答案.【详解】(1)由频率分布直方图,得..(2)(i)由(1)可知,,所以,,显然抽查中的零件指标,故需停止生产并检查设备.(ii)抽测一个零件关键指标在之内的概率为,所以抽测一个零件关键指标在之外的概率为,故,所以,X的数学期望.18.(2023届安徽省联考数学试题)为贯彻落实《健康中国行动(2019—2030年)》《关于全面加强和改进新时代学校体育工作的意见》等文件精神,确保2030年学生体质达到规定要求,各地将认真做好学生的体制健康监测.某市决定对某中学学生的身体健康状况进行调查,现从该校抽取200名学生测量他们的体重,得到如下样本数据的频率分布直方图.(1)求这200名学生体重的平均数和方差(同一组数据用该区间的中点值作代表).(2)由频率分布直方图可知,该校学生的体重服从正态分布,其中μ近似为平均数,近似为方差.①利用该正态分布,求;②若从该校随机抽取50名学生,记表示这50名学生的体重位于区间内的人数,利用①的结果,求.参考数据:.若,则,,.【答案】(1),;(2)①;②;【分析】(1)根据频率分布直方图平均数的求法即可求出,利用方差公式计算即可求解;(2)由(1)可知,,结合题意给的参照数据即可求出,进而得,利用二项分布求数学期望公式计算即可求解.【详解】(1)由题意得,;.所以这200名学生体重的平均数为60,方差为86;(2)①由(1)可知,,则;②由①可知1名学生的体重位于的概率为0.6826.则,所以.19.张先生到一家公司参加面试,面试的规则是;面试官最多向他提出五个问题,只要正确回答出三个问题即终止提问,通过面试根据经验,张先生能够正确回答面试官提出的任何一个问题的概率为,假设回答各个问题正确与否互不干扰.(1)求张先生通过面试的概率;(2)记本次面试张先生回答问题的个数为,求的分布列及数学期望【答案】(1);(2)分布列见解析;期望为.【分析】(1)利用互斥事件的概率加法即得;(2)利用二项分布写出分布列.【详解】解:记张先生第i次答对面试官提出的问题为事件,则,张先生前三个问题均回答正确为事件;前三个问题回答正确两个且第四个又回答正确为事件,前四个问题回答正确两个且第五个又回答正确为事件,张先生通过面试为事件.则根据题意,得因为事件互斥,所以即张先生能够通过面试的概率为根据题意,表明前面三个问题均回答错误(淘汰)或均回答正确(通过),所以表明前面三个问题中有两个回答错误且第四个问题又回答错误(淘汰),或者前面三个问题中有两个回答正确且第四个问题回答正确(通过),所以表明前面四个问题中有两个回答错误、两个回答正确,所以所以的分布列为:故20.为了让人民群众过一个欢乐祥和的新春佳节,某地疫情防控指挥部根据当地疫情防控工作部署,安排4名干部和三个部门(A,B,C)的16名职工到该地的四个高速路口担任疫情防控志愿者,其中16名职工分别是A部门8人,B部门4人,C部门4人.(1)若从这16名职工中选出4人作为组长,求至少有2个组长来自A部门的概率;(2)若将这4名干部随机安排到四个高速路口(假设每名干部安排到各高速路口是等可能的,且各位干部的选择是相互独立的),记安排到第一个高速路口的干部人数为X,求随机变量X的分布列和数学期望.【答案】(1)(2)分布列见解析,数学期望为【分析】(1)根据古典概型的概率计算公式,计算出所求概率.(2)利用二项分布的知识计算出分布列并求得数学期望.【详解】(1)从这16名职工中选出4人作为组长,求至少有2个组长来自A部门的概率为:.(2)依题意可知且,所以,,,,,故分布列为:数学期望.21.致敬百年,读书筑梦,某学校组织全校学生参加“学党史颂党恩,党史网络知识竞赛”活动.并对某年级的100位学生竞赛成绩进行统计,得到如下人数分布表.规定:成绩在内,为成绩优秀.成绩人数510152520205(1)根据以上数据完成列联表,并判断是否有90%的把握认为此次竞赛成绩与性别有关;优秀非优秀合计男10女35合计(2)某班级实行学分制,为鼓励学生多读书,推出“读书抽奖额外赚学分”趣味活动方案:规定成绩达到优秀的同学,可抽奖2次,每次中奖概率为(每次抽奖互不影响,且的值等于成绩分布表中不低于80分的人数频率),中奖1次学分加5分,中奖2次学分加10分.若学生甲成绩在内,请列出其本次读书活动额外获得学分数的分布列并求其数学期望.参考公式:,.附表:【答案】(1)列联表见解析,没有90%的把握认为此次竞赛成绩与性别有关【分析】(1)根据成绩分段表得到优秀人数,结合列联表中的男生优秀人数求得女生优秀人数,然后可以完成列联表;根据列联表数据,利用公式计算K2的观测值k0,与相应临界值比较即可得到结论;(2)先根据成绩分段表求得p的值,然后利用二项分布列计算X的各个取值的概率,列出分布列,根据分布列计算期望即可.【详解】(1)优秀非优秀合计男104050女153550合计2575100假设:此次竞赛成绩与性别无关.,所以没有90%的把握认为此次竞赛成绩与性别有关;(2)p,P(X=0)=P(X=5)=,P(X=10)=,X的分布列为:X0510P期望值E(X)=5×+10×=2.5(分)22.(2023届安徽省、云南省、吉林省、黑龙江省适应性测试数学试题)某工厂生产的产品的质量指标服从正态分布.质量指标介于99至101之间的产品为良品,为使这种产品的良品率达到,则需调整生产工艺,使得至多为.(若,则)【答案】【分析】根据题意以及正态曲线的特征可知,的解集,即可根据集合的包含关系列出不等式组,从而得解.【详解】依题可知,,再根据题意以及正态曲线的特征可知,的解集,由可得,,所以,解得:,故σ至多为.23.对一个物理量做次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差,为使误差在的概率不小于0.9545,至少要测量次(若,则).【答案】32【解析】因为,得到,,要使误差在的概率不小于0.9545,则,得到不等式计算即可.【详解】根据正态曲线的对称性知:要使误差在的概率不小于0.9545,则且,,所以.【点睛】本题是对正态分布的考查,关键点在于能从读出所需信息.24.(2023届重庆市模拟数学试题)重庆八中某次数学考试中,学生成绩服从正态分布.若,则从参加这次考试的学生中任意选取3名学生,至少有2名学生的成绩高于120的概率是.【答案】【分析】结合正态分布特点先求出,再由独立重复试验的概率公式即可求解.【详解】因学生成绩符合正态分布,故,故任意选取3名学生,至少有2名学生的成绩高于120的概率为.25.(2023届广东省模拟数学试题)若,则(精确到0.01).参考数据:若,则,.【分析】根据正态分布的均值和标准差计算概率.【详解】因为,根据参考数据,.【能力提升】1.已知随机变量,若最大,则.【答案】24【分析】先根据解出,再根据二项分布的方差公式求出,再计算即可.【详解】由题意知:,要使最大,有,化简得,解得,故,又,故.2.若随机变量X服从二项分布,则使取得最大值时,.【答案】3或4【分析】先求得的表达式,利用列不等式组的方法来求得使取得最大值时的值.【详解】依题意,依题意,,,,所以、不是的最大项,当时,由,整理得,即,整理得,,所以当为3或4时,取得最大值.3.(2023年湖南省模拟数学试题)统计与概率主要研究现实生活中的数据和客观世界中的随机现象,通过对数据的收集、整理、分析、描述及对事件发生的可能性刻画,来帮助人们作出合理的决策.(1)现有池塘甲,已知池塘甲里有50条鱼,其中A表示其中A种鱼的条数,请写出的分布列,并求的数学期望;(2)另有池塘乙,为估计池塘乙中的鱼数,某同学先从中捉了50条鱼,做好记号后放回池塘,再从中捉了20条鱼,发现有记号的有5条.(ⅰ)请从分层抽样的角度估计池塘乙中的鱼数.(ⅱ)统计学中有一种重要而普遍的求估计量的方法─最大似然估计,其原理是使用概率模型寻找能够以较高概率产生观察数据的系统发生树,即在什么情况下最有可能发生已知的事件.请从条件概率的角度,采用最大似然估计法估计池塘乙中的鱼数.【答案】(1)分布列见解析,(2)(i)200;(ii)199或200【分析】(1)根据超几何概率公式即可求解概率,进而得分布列和期望,(2)根据抽样比即可求解总数,根据最大似然思想结合概率的单调性即可求解最大值.【详解】(1),故分布列为:012.(2)(i)设池塘乙中鱼数为,则,解得,故池塘乙中的鱼数为200.(ii)设池塘乙中鱼数为,令事件“再捉20条鱼,5条有记号”,事件“池塘乙中鱼数为”则,由最大似然估计法,即求最大时的值,其中,当时,当时,当时所以池塘乙中的鱼数为199或200.4.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得,,其中xi为抽取的第i个零件的尺寸,.用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布,则,,.【答案】(1),(2)(ⅰ)见详解;(ⅱ)需要.,【分析】(1)依题知一个零件的尺寸在之内的概率,可知尺寸在之外的概率为0.0026,而,进而可以求出的数学期望.(2)(i)判断监控生产过程的方法的合理性,重点是考虑一天内抽取的16个零件中,出现尺寸在之外的零件的概率是大还是小,若小即合理;(ii)计算,剔除之外的数据,算出剩下数据的平均数,即为的估计值,剔除之外的数据,剩下数据的样本方差,即为的估计值.【详解】(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此.的数学期望为.(2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由,得的估计值为,的估计值为,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据,剩下数据的平均数为,因此的估计值为.,剔除之外的数据,剩下数据的样本方差为,因此的估计值为.【点睛】本题考查正态分布的实际应用以及离散型随机变量的数学期望,正态分布是一种重要的分布,尤其是正态分布的原则,审清题意,细心计算,属中档题.5.(2023届重庆市模拟数学试题(适用新高考))某网络在平台开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项活动.(1)若甲第一关通过的概率为,第二关通过的概率为,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为分,现要根据得分给共名参加者中得分前名发放奖励,①假设该闯关活动平均分数为分,分以上共有人,已知甲的得分为分,问甲能否获得奖励,请说明理由;②丙得知他的分数为分,而乙告诉丙:“这次闯关活动平均分数为分,分以上共有人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量,则;;.【答案】(1)(2)①能,理由见解析;②乙所说为假【分析】(1)利用独立事件的概率公式,结合甲闯关的可能情况求解即可;(2)①利用正态分布的对称性及法则,求得前名参赛者的最低得分即可判断;②假设乙所说为真,利用正态分布的对称性及法则,证得丙的分数为分是小概率事件,从而得以判断.【详解】(1)设:第次通过第一关,:第次通过第二关,甲可以进入第三关的概率为,由题意知.(2)设此次闯关活动的分数记为.①由题意可知,因为,且,所以,则;而,且,所以前名参赛者的最低得分高于,而甲的得分为分,所以甲能够获得奖励;②假设乙所说为真,则,,而,所以,从而,而,所以为小概率事件,即丙的分数为分是小概率事件,可认为其不可能发生,但却又发生了,所以可认为乙所说为假.6.足球比赛全场比赛时间为90分钟,在90分钟结束时成绩持平,若该场比赛需要决出胜负,需进行30分钟的加时赛,若加时赛仍是平局,则采取“点球大战”的方式决定胜负.“点球大战”的规则如下:①两队应各派5名队员,双方轮流踢点球,累计进球个数多者胜:②如果在踢满5轮前,一队的进球数已多于另一队踢满5次可能射中的球数,则不需再踢,譬如:第4轮结束时,双方进球数比为2:0,则不需再踢第5轮了;③若前5轮点球大战中双方进球数持平,则采用“突然死亡法”决出胜负,即从第6轮起,双方每轮各派1人罚点球,若均进球或均不进球,则继续下一轮,直到出现一方进球另一方不进球的情况,进球方胜.(1)已知小明在点球训练中射进点球的概率是.在一次赛前训练中,小明射了3次点球,且每次射点球互不影响,记X为射进点球的次数,求X的分布列及数学期望.,乙队每名球员射进点球的概率为.每轮点球中,进球与否互不影响,各轮结果也互不影响.求在第4轮结束时,甲队进了3个球并刚好胜出的概率.【答案】(1)分布列见解析,期望为;(2).【分析】(1)根据题意,即可计算分布列及期望;(2)“甲VS乙:3:0”记为事件,“甲VS乙:3:1”记为事件,此两互斥事件的和即为所求事件,分别计算两事件的概率,求和即得解.【详解】(1)依题意,,的可能取值为:0,1,2,3,;.X的分布列为:X0123P.(2)记“在第4轮结束时,甲队进了3个球并刚好胜出”为事件A.依题意知:在第4轮结束时,甲队进了3个球并刚好胜出,甲乙两队进球数比为:“甲VS乙:3:0”记为事件,或“甲VS乙:3:1”记为事件,则,且与互斥.依题意有:,,.7.(2023届福建省适应性练习卷(省质检)数学试题)已知,则,,.今有一批数量庞大的零件.假设这批零件的某项质量指标引单位:毫米)服从正态分布,现从中随机抽取N个,这N个零件中恰有K个的质量指标ξ位于区间.若,试以使得最大的N值作为N的估计值,则N为(

)A.45 B.53 C.54 D.90【答案】B【分析】由已知可推得,,根据已知以及正态分布的对称性,可求得.则,,设,求出函数的最大整数值,即可得出答案.【详解】由已知可得,.又,所以,,.设,则,所以,,所以.,所以,,所以.所以,以使得最大的N值作为N的估计值,则N为.【点睛】思路点睛:由正态分布求出概率,然后根据已知,可得,得出,利用函数求出的最大值.8.学习强国中有两项竞赛答题活动,一项为“双人对战”,另一项为“四人赛”.活动规则如下:一天内参与“双人对战”活动,仅首局比赛可获得积分,获胜得2分,失败得1分;一天内参与“四人赛”活动,仅前两局比赛可获得积分,首局获胜得3分,次局获胜得2分,失败均得1分.已知李明参加“双人对战”活动时,每局比赛获胜的概率为;参加“四人赛”活动(每天两局)时,第一局和第二局比赛获胜的概率分别为p,.李明周一到周五每天都参加了“双人对战”活动和“四人赛”活动(每天两局),各局比赛互不影响.(1)求李明这5天参加“双人对战”活动的总得分X的分布列和数学期望;(2)设李明在这5天的“四人赛”活动(每天两局)中,恰有3天每天得分不低于3分的概率为.求p为何值时,取得最大值.【答案】(1)分布列见解析,(分)(2)【分析】(1)可取5,6,7,8,9,10,求出对应随机变量的概率,从而可求出分布列,再根据期望公式求出数学期望即可;(2)先求出一天得分不低于3分的概率,再求出恰有3天每天得分不低于3分的概率为,再根据导出求出函数的单调区间,即可得出答案.【详解】(1)解:可取5,6,7,8,9,10,,,,,,,分布列如下:5678910所以(分);(2)解:设一天得分不低于3分为事件,则,则恰有3天每天得分不低于3分的概率,则,当时,,当时,,所以函数在上递增,在上递减,所以当时,取得最大值.9.(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论