版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省镇沅县一中2023-2024学年高考数学二模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,则()A. B. C. D.2.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.3.若,满足约束条件,则的最大值是()A. B. C.13 D.4.已知集合,定义集合,则等于()A. B.C. D.5.函数,,则“的图象关于轴对称”是“是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.117.在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为()A. B. C. D.8.设函数的定义域为,命题:,的否定是()A., B.,C., D.,9.设,,则()A. B.C. D.10.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则11.已知等比数列满足,,等差数列中,为数列的前项和,则()A.36 B.72 C. D.12.已知,则的大小关系为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.实数,满足约束条件,则的最大值为__________.14.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.15.已知复数(为虚数单位),则的模为____.16.在中,,是的角平分线,设,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.18.(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,.(Ⅰ)若,求的值;(Ⅱ)证明:当取最小值时,与共线.19.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:等级不合格合格得分频数624(1)由该题中频率分布直方图求测试成绩的平均数和中位数;(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.20.(12分)已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.21.(12分)已知函数.(1)讨论函数单调性;(2)当时,求证:.22.(10分)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
化简得到,,再计算复数模得到答案.【详解】,故,故,.故选:.【点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.2、D【解析】
先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.3、C【解析】
由已知画出可行域,利用目标函数的几何意义求最大值.【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.4、C【解析】
根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.5、B【解析】
根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.【详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.6、B【解析】
根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.7、B【解析】
根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k.再把点代入,求得k的值,可得要求的双曲线的方程.【详解】∵双曲线的渐近线方程为设所求双曲线的标准方程为k.又在双曲线上,则k=16-2=14,即双曲线的方程为∴双曲线的标准方程为故选:B【点睛】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.8、D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.9、D【解析】
由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.10、D【解析】试题分析:,,故选D.考点:点线面的位置关系.11、A【解析】
根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【详解】等比数列满足,,所以,又,所以,由等差数列的性质可得.故选:A【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.12、A【解析】
根据指数函数的单调性,可得,再利用对数函数的单调性,将与对比,即可求出结论.【详解】由题知,,则.故选:A.【点睛】本题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题..二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】
画出可行域,根据目标函数截距可求.【详解】解:作出可行域如下:由得,平移直线,当经过点时,截距最小,最大解得的最大值为10故答案为:10【点睛】考查可行域的画法及目标函数最大值的求法,基础题.14、【解析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.【详解】由题意作出区域,如图中阴影部分所示,易知,故,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.15、【解析】,所以.16、【解析】
设,,,由,用面积公式表示面积可得到,利用,即得解.【详解】设,,,由得:,化简得,由于,故.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)分类讨论去绝对值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范围,判断,为正,去掉绝对值,转化为在时恒成立,得到,,在恒成立,从而得到的取值范围.【详解】(1)当时,,由,得,即,或,即,或,即,综上:或,所以不等式的解集为.(2),,因为,,所以,又,,,得.不等式恒成立,即在时恒成立,不等式恒成立必须,,解得.所以,解得,结合,所以,即的取值范围为.【点睛】本题考查分类讨论解绝对值不等式,含有绝对值的不等式的恒成立问题.属于中档题.18、(Ⅰ)(Ⅱ)证明见解析.【解析】由与,得,,的方程为.设,则,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),当且仅当或时,取最小值,此时,,故与共线.19、(1)64,65;(2);(3).【解析】
(1)根据频率分布直方图及其性质可求出,平均数,中位数;(2)设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,由条件概率公式可求出;(3)从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,其中“不合格”的学生数为,“合格”的学生数为6;由题意可得,5,10,15,1,利用“超几何分布”的计算公式即可得出概率,进而得出分布列与数学期望.【详解】由题意知,样本容量为,.(1)平均数为,设中位数为,因为,所以,则,解得.(2)由题意可知,分数在内的学生有24人,分数在内的学生有12人.设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,则,所以.(3)在评定等级为“合格”和“不合格”的学生中用分层抽样的方法抽取10人,则“不合格”的学生人数为,“合格”的学生人数为.由题意可得的所有可能取值为0,5,10,15,1.,.所以的分布列为0510151.【点睛】本题主要考查了频率分布直方图的性质、分层抽样、超几何分布列及其数学期望,考查了计算能力,属于中档题.20、(1);(2).【解析】
试题分析:(1)先求导,然后利用导数等于求出切点的横坐标,代入两个曲线的方程,解方程组,可求得;(2)设与交点的横坐标为,利用导数求得,从而,然后利用求得的取值范围为.试题解析:(1)对求导得.设直线与曲线切于点,则,解得,所以的值为1.(2)记函数,下面考察函数的符号,对函数求导得.当时,恒成立.当时,,从而.∴在上恒成立,故在上单调递减.,∴,又曲线在上连续不间断,所以由函数的零点存在性定理及其单调性知唯一的,使.∴;,,∴,从而,∴,由函数为增函数,且曲线在上连续不断知在,上恒成立.①当时,在上恒成立,即在上恒成立,记,则,当变化时,变化情况列表如下:
3
0
极小值
∴,故“在上恒成立”只需,即.②当时,,当时,在上恒成立,综合①②知,当时,函数为增函数.故实数的取值范围是考点:函数导数与不等式.【方法点晴】函数导数问题中,和切线有关的题目非常多,我们只要把握住关键点:一个是切点,一个是斜率,切点即在原来函数图象上,也在切线上;斜率就是导数的值.根据这两点,列方程组,就能解决.本题第二问我们采用分层推进的策略,先求得的表达式,然后再求得的表达式,我们就可以利用导数这个工具来求的取值范围了.21、(1)见解析(2)见解析【解析】
(1)根据的导函数进行分类讨论单调性(2)欲证,只需证,构造函数,证明,这时需研究的单调性,求其最大值即可【详解】解:(1)的定义域为,,①当时,由得,由,得,所以在上单调递增,在单调递减;②当时,由得,由,得,或,所以在上单调递增,在单调递减,在单调递增;③当时,,所以在上单调递增;④当时,由,得,由,得,或,所以在上单调递增,在单调递减,在单调递增.(2)当时,欲证,只需证,令,,则,因存在,使得成立,即有,使得成立.当变化时,,的变化如下:0单调递增单调递减所以.因为,所以,所以.即,所以当时,成立.【点睛】考查求函数单调性的方法和用函数的最值证明不等式的方法,难题.22、(2),(2),的最大整数是2.(3)存在,【解析】
(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,,为等比数列,所以,化简计算得,,从而得到数列的通项公式,再计算出,,,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,,利用同样的方法可得.【详解】解:(2)由题,当时,,即当时,①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Windows Server 2022活动目录管理实践( 第2版 微课版)-课件项目22 通过组策略管理用户环境
- 2023-2024学年上海市普陀区培佳双语学校六年级(上)段考数学试卷(10月份)(五四学制)
- Python程序设计 课件 第一章 Python概述
- 北师大版八年级生物上册期中素养综合测试课件
- 甘肃省民乐县思源实验学校2024-2025学年八年级上学期期中学业检测物理试卷
- 上海市闵行区六校联考2024-2025学年高一上学期10月期中考试数学试题(无答案)
- 八年级生物期中模拟卷【测试范围:第15~18章】(考试版A4)(北师大版)
- 秋天的雨教案课件
- 大青树下的小学课件
- 2024年经贸职业技术学院第四批公开招聘特殊专业技术岗位人员试题及答案
- 《安全注射培训》
- 智慧机关综合服务集成平台规划方案
- 第6章 金属基复合材料的界面及其表征
- 第一单元 岁月回声- 保卫黄河 课件 2023-2024学年人音版初中音乐九年级下册
- 实施书记项目工作总结
- 新媒体视觉设计之新媒体动态交互视觉设计
- 《治安管理处罚法》课件
- 咳嗽晕厥综合征查房
- 2024年中国长江三峡集团有限公司招聘笔试参考题库含答案解析
- 胎膜早破教学查房
- 消毒供应中心消毒隔离质量控制评价标准
评论
0/150
提交评论