欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

初中数学最值问题

数学问题中常见的一类问题是。初中数学的几何最值问题经典例题。A.   B.   C.5   D.。数学组卷圆的最值问题。A.m≥0 B. C. D.。1.1 在锐角三角形中探求线段和的最小值。最值问题。问题大都归于两类基本模型。初中数学代数最值问题常用解决方法。也就是最大值和最小值问题。中考数学最值问题。

初中数学最值问题Tag内容描述:<p>1、最值”问题的认识与解决策略摘要:本文对代数中最值的求法与几何中最值的求法进入深入探究。充分展示最值的丰富内涵。通过探究一般规律,给出解决问题的基本方法。提高对最值问题有深入的理解,同时在学生及同行中营造良好的探究氛围。关键词:最值,二次函数,基本不等式,判别式,构造图形。数学问题中常见的一类问题是:求某个变量的最大值或最小值。在生产实践中,我们经常带有“最”字问题,如投入多少、利益最高、时间最短、效益最大、耗材最少等。我们把这类问题称为“最值”问题。最值问题也是数学竞赛中的热点问题,它内容丰富,。</p><p>2、初中数学的几何最值问题经典例题1. (2016山东济南3分)如图,MON=90,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【 】ABC5D2.(2016湖北鄂州3分)在锐角三角形ABC中,BC=,ABC=45,BD平分ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 。3.(2016四川凉山5分)如图,圆柱底面半径为,高为,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为 。4. (2016四川眉山。</p><p>3、数学组卷圆的最值问题一选择题(共7小题)1(2014春兴化市月考)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C为第一象限内一点,且AC=2,设tanBOC=m,则m的取值范围是()Am0BCD2(2013武汉模拟)如图BAC=60,半径长1的O与BAC的两边相切,P为O上一动点,以P为圆心,PA长为半径的P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A3B6CD3(2014武汉模拟)如图,P为O内的一个定点,A为O上的一个动点,射线AP、AO分别与O交于B、C两点若O的半径长为3,OP=,则弦BC的最大值为()A2B3CD34(2015黄陂区校。</p><p>4、求两线段长度值和最小”问题全解析山东沂源县徐家庄中心学校左进祥在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,BAC=45,BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为 分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法我们要选用三角形两边之和大于第。</p><p>5、最值问题“最值”问题大都归于两类基本模型:、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 一、利用函数模型求最值例1、如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃ABCD,设AB=x米,由于实际需要矩形的宽只能。</p><p>6、精品文档初中数学代数最值问题常用解决方法最值问题,也就是最大值和最小值问题。它是初中数学竞赛中的常见问题。这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度。一. 配方法例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛)可取得的最小值为_________。解:原式由此可知,当时,有最小值。二. 设参数法例2. (中等数学奥林匹克训练题)已知实数满足。则的最大值为________。解:设,易知由,得从而,由此可知,是关于t的方程的两个实根。于是,有解得。故的最大值为2。例3. (2004年全国初中联。</p><p>7、最值问题 集锦 平面几何中的最值问题 01 几何的定值与最值 07 最短路线问题 14 对称问题 18 巧作 对称点 妙解最值题 22 数学最值题的常用解法 26 求最值问题 29 有理数的一题多解 34 4道经典题 37 平面几何中的最值。</p><p>8、数学组卷圆的最值问题 一 选择题 共7小题 1 2014春 兴化市月考 在平面直角坐标系中 点A的坐标为 3 0 点B为y轴正半轴上的一点 点C为第一象限内一点 且AC 2 设tan BOC m 则m的取值范围是 A m 0 B C D 2 2013 武汉模拟。</p><p>9、中考数学最值问题【例题1】(经典题)二次函数y=2(x3)24的最小值为 【例题2】(2018江西)如图,AB是O的弦,AB=5,点C是O上的一个动点,且ACB=45,若点M、N分别是AB、AC的中点,则MN长的最大值是 【例题3】(2019湖南张家界)已知抛物线yax2bxc(a0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC3。</p>
【初中数学最值问题】相关DOC文档
初中数学论文:“最值”问题的认识与解决策略.doc
初中数学经典最值问题提高题.doc
2016中考初中数学圆的最值问题含答案.doc
[中考数学]“求两线段长度值和最小”问题全解析.doc
初中数学最值问题.doc
初中数学代数最值问题常用解决方法
初中数学“最值问题” 集锦.doc
中考初中数学圆的最值问题含答案分析.doc
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!