导数公式大全
导数的基本公式与运算法则。导数的基本公式与运算法则。导数的基本公式与运算法则。基本初等函数的导数公式。(ax) = ax lna .。(cos x) = - sin x.。(cos x) = - sin x.。(cot x) = - csc2x .。(cot x) = - csc2x .。
导数公式大全Tag内容描述:<p>1、导数的基本公式与运算法则,基本初等函数的导数公式,(x ) = x -1 .,(ax) = ax lna .,(ex) = ex.,(sin x) = cos x.,(cos x) = - sin x.,(tan x) = sec2x .,(cot x) = - csc2x .,(sec x) = sec x tan x .,(csc x) = - csc x cot x .,另外还有反三角函数的导数公式:,定理2. 1 设函数 u(x)、v(x) 在 x 处可导,,在 x 处也可导,,(u(x) v(x) = u(x) v (x);,(u(x)v(x) = u(x)v(x) + u(x)v(x);,导数的四则运算,且,则它们的和、差、积与商,推论 1 (cu(x) = cu(x) (c 为常数).,推论 2,乘法法则的推广:,补充例题: 求下列函数的导数:,解 根据推论 。</p><p>2、导数的基本公式与运算法则,基本初等函数的导数公式,(x ) = x -1 .,(ax) = ax lna .,(ex) = ex.,(sin x) = cos x.,(cos x) = - sin x.,(tan x) = sec2x .,(cot x) = - csc2x .,(sec x) = sec x tan x .,(csc x) = - csc x cot x .,另外还有反三角函数的导数公式:,定理2. 1 设函数 u(x)、v(x) 在 x 处可导,,在 x 处也可导,,(u(x) v(x) = u(x) v (x);,(u(x)v(x) = u(x)v(x) + u(x)v(x);,导数的四则运算,且,则它们的和、差、积与商,推论 1 (cu(x) = cu(x) (c 为常数).,推论 2,乘法法则的推广:,补充例题: 求下列函数的导数:,解 根据推论 。</p><p>3、导数的基本公式与运算法则,基本初等函数的导数公式,(x ) = x -1 .,(ax) = ax lna .,(ex) = ex.,(sin x) = cos x.,(cos x) = - sin x.,(tan x) = sec2x .,(cot x) = - csc2x .,(sec x) = sec x tan x .,(csc x) = - csc x cot x .,另外还有反三角函数的导数公式:,定理2. 1 设函数 u(x)、v(x) 在 x 处可导,,在 x 处也可导,,(u(x) v(x) = u(x) v (x);,(u(x)v(x) = u(x)v(x) + u(x)v(x);,导数的四则运算,且,则它们的和、差、积与商,推论 1 (cu(x) = cu(x) (c 为常数).,推论 2,乘法法则的推广:,补充例题: 求下列函数的导数:,解 根据推论 。</p><p>4、导数的基本公式与运算法则,基本初等函数的导数公式,(x ) = x -1 .,(ax) = ax lna .,(ex) = ex.,(sin x) = cos x.,(cos x) = - sin x.,(tan x) = sec2x .,(cot x) = - csc2x .,(sec x) = sec x tan x .,(csc x) = - csc x cot x .,另外还有反三角函数的导数公式:,定理2. 1 设函数 u(x)、v(x) 在 x 处可导,,在 x 处也可导,,(u(x) v(x) = u(x) v (x);,(u(x)v(x) = u(x)v(x) + u(x)v(x);,导数的四则运算,且,则它们的和、差、积与商,推论 1 (cu(x) = cu(x) (c 为常数).,推论 2,乘法法则的推广:,补充例题: 求下列函数的导数:,解 根据推论 。</p><p>5、2019/7/3,微积分-求导法则,1,几个初等函数的导数 1.常数的导数: 2.幂函数的导数: 特殊:,复习:导数概念,2019/7/3,微积分-求导法则,2,3.对数函数的导数,4.正、余弦函数的导数,2019/7/3,微积分-求导法则,3,一、和、差、积、商的求导法则,定理,3.2 求导法则,2019/7/3,微积分-求导法则,4,证:,5,证,2019/7/3,微积分-求导法则,6,推论,2019/7/3,微积分-求导法则,7,例1,解,例2,解,2019/7/3,微积分-求导法则,8,2019/7/3,微积分-求导法则,9,例3,解,同理可得,2019/7/3,微积分-求导法则,10,例4,解,同理可得,2019/7/3,微积分-求导法则,11,三角函数。</p><p>6、导数的基本公式与运算法则,基本初等函数的导数公式,(x)=x-1.,(ax)=axlna.,(ex)=ex.,(sinx)=cosx.,(cosx)=-sinx.,(tanx)=sec2x.,(cotx)=-csc2x.,(secx)=secxtanx.,(cscx)=-cscxcotx.,另外还。</p><p>7、导数的基本公式与运算法则,基本初等函数的导数公式,(x ) = x -1 .,(ax) = ax lna .,(ex) = ex.,(sin x) = cos x.,(cos x) = - sin x.,(tan x) = sec2x .,(cot x) = - csc2x .,(sec x) = sec x tan x .,(csc x) = - csc x cot x。</p><p>8、导数的基本公式与运算法则,基本初等函数的导数公式,(x ) = x -1 .,(ax) = ax lna .,(ex) = ex.,(sin x) = cos x.,(cos x) = - sin x.,(tan x) = sec2x .,(cot x) = - csc2x .,(sec x) = sec x tan x .,(csc x) = - csc x cot x .,另外还有反三角函数的。</p>