第二章随机变量
在性别抽查试验中用实数。2.1 随机变量及其分布 &#167。2.4 常用离散分布 &#167。2.5 常用连续分布 &#167。2.6 随机变量函数的分布 &#167。2离散型随机变量。2离散型随机变量。则称 X 为离散型随机变量.。离散型随机变量的分布律。设离散型随机变量 X 的所有可能取值为。
第二章随机变量Tag内容描述:<p>1、第二章 随机变量第一节 随机变量及其分布函数上一章中我们讨论的随机事件中有些是直接用数量来标识的,例如,抽样检验灯泡质量试验中灯泡的寿命;而有些则不是直接用数量来标识的,如性别抽查试验中所抽到的性别.为了更深入地研究各种与随机现象有关的理论和应用问题,我们有必要将样本空间的元素与实数对应起来.即将随机试验的每个可能的结果e都用一个实数X来表示.例如,在性别抽查试验中用实数“1”表示“出现男性”,用“0”表示“出现女性”.显然,一般来讲此处的实数X值将随e的不同而变化,它的值因e的随机性而具有随机性,我们称这。</p><p>2、2.1 随机变量及其分布 2.2 随机变量的数学期望 2.3 随机变量的方差与标准差 2.4 常用离散分布 2.5 常用连续分布 2.6 随机变量函数的分布 2.7 分布的其他特征数,第二章 随机变量及其分布,2.1 随机变量及其分布,(1) 掷一颗骰子, 出现的点数 X 1,2,6. (2) n个产品中的不合格品个数 Y 0,1,2,n (3) 某商场一天内来的顾客数 Z 0,1,2, (4) 某种型号电视机的寿命 T : 0, +),2.1.1 随机变量的定义,定义2.1.1 设 =为某随机现象的样本空间, 称定义在上的实值函数X=X()为随机变量.,注 意 点 (1),(1) 随机变量X()是样本点的函数,,其定义域为。</p><p>3、一.离散型随机变量的概念与性质,第二章 随机变量及其分布,2离散型随机变量,离散型随机变量的定义,如果随机变量 X 的取值是有限个或可列无穷个,则称 X 为离散型随机变量,2离散型随机变量,返回主目录,第二章 随机变量及其分布,2离散型随机变量,离散型随机变量的分布律,设离散型随机变量 X 的所有可能取值为,并设,则称上式或,为离散型随机变量 X 的分布律,返回主目录,说 明,离散型随机变量可完全由其分布律来刻划 即离散型随机变量可完全由其的可能取值以及取这 些值的概率唯一确定,第二章 随机变量及其分布,2离散型随机变量,离散型随机变量。</p>