欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

高等数学下册课件

多元函数泰勒公式。求它们的近似函数关系 y=f (x) .。二、 对坐标的曲面积分的概念与性质。三、对坐标的曲面积分的计算法。四、两类曲面积分的联系。对坐标的曲面积分。一、对面积的曲面积分的概念与性质。二、对面积的曲面积分的计算法。对面积的曲面积分。一、被积函数含参变量的积分。一、多元复合函数求导的链式法则。曲面及其方程。

高等数学下册课件Tag内容描述:<p>1、第九节,一、二元函数泰勒公式,二、极值充分条件的证明,机动 目录 上页 下页 返回 结束,二元函数的泰勒公式,第八章,一、二元函数的泰勒公式,一元函数,的泰勒公式:,推广,多元函数泰勒公式,机动 目录 上页 下页 返回 结束,记号,(设下面涉及的偏导数连续):,一般地,机动 目录 上页 下页 返回 结束,表示,表示,定理1.,的某一邻域内有直,到 n + 1 阶连续偏导数 ,为此邻域内任,一点,则有,其中, 称为f 在点(x0 , y0 )的 n 阶泰勒公式,称为其拉格,朗日型余项 .,机动 目录 上页 下页 返回 结束,证: 令,则,利用多元复合函数求导法则可得:,机动 目录 上。</p><p>2、第八章,*第十节,问题的提出:,已知一组实验数据,求它们的近似函数关系 yf (x) .,需要解决两个问题:,1. 确定近似函数的类型,根据数据点的分布规律,根据问题的实际背景,2. 确定近似函数的标准,实验数据有误差,不能要求,机动 目录 上页 下页 返回 结束,最小二乘法,偏差,有正有负,值都较小且便于计算,可由偏差平方和最小,为使所有偏差的绝对,来确定近似函数 f (x) .,最小二乘法原理:,设有一列实验数据,分布在某条曲线上,通过偏差平方和最小求该曲线的方,法称为最小二乘法,找出的函数关系称为经验公式 ., 它们大体,机动 目录 上页 下页 返回 结。</p><p>3、第五节,一、有向曲面及曲面元素的投影,二、 对坐标的曲面积分的概念与性质,三、对坐标的曲面积分的计算法,四、两类曲面积分的联系,机动 目录 上页 下页 返回 结束,对坐标的曲面积分,第十章,一、有向曲面及曲面元素的投影, 曲面分类,双侧曲面,单侧曲面,莫比乌斯带,曲面分上侧和下侧,曲面分内侧和外侧,曲面分左侧和右侧,(单侧曲面的典型),机动 目录 上页 下页 返回 结束,其方向用法向量指向,方向余弦, 0 为前侧 0 为后侧,封闭曲面, 0 为右侧 0 为左侧, 0 为上侧 0 为下侧,外侧 内侧, 设 为有向曲面,侧的规定,指定了侧的曲面叫有向曲面,表示 。</p><p>4、第四节,一、对面积的曲面积分的概念与性质,二、对面积的曲面积分的计算法,机动 目录 上页 下页 返回 结束,对面积的曲面积分,第十章,一、对面积的曲面积分的概念与性质,引例: 设曲面形构件具有连续面密度,类似求平面薄板质量的思想, 采用,可得,求质,“大化小, 常代变, 近似和, 求极限”,的方法,量 M.,其中, 表示 n 小块曲面的直径的,最大值 (曲面的直径为其上任意两点间距离的最大者).,机动 目录 上页 下页 返回 结束,定义:,设 为光滑曲面,“乘积和式极限”,都存在,的曲面积分,其中 f (x, y, z) 叫做被积,据此定义, 曲面形构件的质量为,曲。</p><p>5、第五节,一、被积函数含参变量的积分,二、积分限含参变量的积分,机动 目录 上页 下页 返回 结束,含参变量的积分,第九章,一、被积函数含参变量的积分,上的连续函数,则积分,确定了一个定义在a, b上的函数,记作,x 称为参变量, 上式称为含参变量的积分.,含参积分的性质,定理1.(连续性),上连续,则由 确定的含参积分在a, b上连续., 连续性, 可积性, 可微性 :,机动 目录 上页 下页 返回 结束,证:,在闭区域R上连续, 所以一致连续,即,只要,就有,就有,这说明,机动 目录 上页 下页 返回 结束,定理1 表明,定义在闭矩形域上的连续函数,其极限运,算与积分。</p><p>6、四、二次曲面,第三节,一、曲面方程的概念,二、旋转曲面,三、柱面,机动 目录 上页 下页 返回 结束,曲面及其方程,第七章,一、曲面方程的概念,求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的,化简得,即,说明: 动点轨迹为线段 AB 的垂直平分面.,引例:,显然在此平面上的点的坐标都满足此方程,不在此平面上的点的坐标不满足此方程.,解:设轨迹上的动点为,轨迹方程.,机动 目录 上页 下页 返回 结束,定义1.,如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系:,(1) 曲面 S 上的任意点的坐标都满足此方程;,则 F( x, y, z ) = 0 叫做曲面 S 的方程,曲面 S 。</p><p>7、数量关系 ,第七章,第一部分 向量代数,第二部分 空间解析几何,在三维空间中:,空间形式 点, 线, 面,基本方法 坐标法; 向量法,坐标,方程(组),空间解析几何与向量代数,四、利用坐标作向量的线性运算,第一节,一、向量的概念,二、向量的线性运算,三、空间直角坐标系,五、向量的模、方向角、投影,机动 目录 上页 下页 返回 结束,向量及其线性运算,第七章,表示法:,向量的模 :,向量的大小,一、向量的概念,向量:,(又称矢量).,既有大小, 又有方向的量称为向量,向径 (矢径):,自由向量:,与起点无关的向量.,起点为原点的向量.,单位向量:,模为 1 的向量。</p><p>8、第四节,一元复合函数,求导法则,本节内容:,一、多元复合函数求导的链式法则,二、多元复合函数的全微分,微分法则,机动 目录 上页 下页 返回 结束,多元复合函数的求导法则,第八章,一、多元复合函数求导的链式法则,定理. 若函数,处偏导连续,在点 t 可导,则复合函数,证: 设 t 取增量t ,则相应中间变量,且有链式法则,机动 目录 上页 下页 返回 结束,有增量u ,v ,( 全导数公式 ),(t0 时,根式前加“”号),机动 目录 上页 下页 返回 结束,若定理中,说明:,例如:,易知:,但复合函数,偏导数连续减弱为,偏导数存在,机动 目录 上页 下页 返回 结束,则定理。</p><p>9、第八章,*二、全微分在数值计算中的应用,应用,第三节,一元函数 y = f (x) 的微分,近似计算,估计误差,机动 目录 上页 下页 返回 结束,本节内容:,一、全微分的定义,全微分,一、全微分的定义,定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y ),可表示成,其中 A , B 不依赖于 x , y , 仅与 x , y 有关,,称为函数,在点 (x, y) 的全微分, 记作,若函数在域 D 内各点都可微,则称函数,f ( x, y ) 在点( x, y) 可微,,机动 目录 上页 下页 返回 结束,处全增量,则称此函数在D 内可微.,(2) 偏导数连续,下面两个定理给出了可微与偏导数的关系:,。</p><p>10、第二节,机动 目录 上页 下页 返回 结束,一、 偏导数概念及其计算,二 、高阶偏导数,偏 导 数,第八章,一、 偏导数定义及其计算法,引例:,研究弦在点 x0 处的振动速度与加速度 ,就是,中的 x 固定于,求,一阶导数与二阶导数.,x0 处,关于 t 的,机动 目录 上页 下页 返回 结束,将振幅,定义1.,在点,存在,的偏导数,记为,的某邻域内,则称此极限为函数,极限,设函数,机动 目录 上页 下页 返回 结束,注意:,同样可定义对 y 的偏导数,若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x,则该偏导数称为偏导函数,也简称为,偏导数 ,记为,机动 目录 。</p><p>11、第六节,Green 公式,Gauss 公式,推广,一、高斯公式,*二、沿任意闭曲面的曲面积分为零的条件,三、通量与散度,机动 目录 上页 下页 返回 结束,高斯公式 通量与散度,第十章,一、高斯 ( Gauss ) 公式,定理1. 设空间闭区域 由分片光滑的闭曲, 上有连续的一阶偏导数 ,下面先证:,函数 P, Q, R 在,面 所围成, 的方向取外侧,则有,(Gauss 公式),高斯。</p><p>12、第五节,一、近似计算,二、欧拉公式,函数幂级数展开式的应用,机动 目录 上页 下页 返回 结束,第十一章,一、近似计算,例1. 计算,的近似值, 精确到,解:,机动 目录 上页 下页 返回 结束,例2. 计算,的近似值 ,使准确到,解: 已知,故,令,得,于是有,机动 目录 上页 下页 返回 结束,在上述展开式中取前四项,机动 目录 上页 下页 返回 结束,说明: 在展开式,中,令,得。</p><p>13、微分方程,第十二章, 积分问题, 微分方程问题,推广,微分方程的基本概念,机动 目录 上页 下页 返回 结束,第一节,微分方程的基本概念,引例,几何问题,物理问题,第十二章,引例1.,一曲线通过点(1,2) ,在该曲线上任意点处的,解: 设所求曲线方程为 y = y(x) , 则有如下关系式:,(C为任意常数),由 得 C = 1,因此所求曲线方程为,由 得,切线斜率为 2x ,。</p><p>14、二阶微分方程的,机动 目录 上页 下页 返回 结束,习题课 (二),二、微分方程的应用,解法及应用,一、两类二阶微分方程的解法,第十二章,一、两类二阶微分方程的解法,1. 可降阶微分方程的解法 降阶法,令,令,逐次积分求解,机动 目录 上页 下页 返回 结束,2. 二阶线性微分方程的解法,常系数情形,齐次,非齐次,代数法,欧拉方程,练习题: P327 题 2 ; 3 (6) , (7。</p><p>15、机动 目录 上页 下页 返回 结束,第十节,欧拉方程,欧拉方程,常系数线性微分方程,第十二章,欧拉方程的算子解法:,则,计算繁!,机动 目录 上页 下页 返回 结束,则由上述计算可知:,用归纳法可证,于是欧拉方程,转化为常系数线性方程:,机动 目录 上页 下页 返回 结束,例1.,解:,则原方程化为,亦即,其根,则对应的齐次方程的通解为,特征方程,机动 目录 上页 下页 返回 结束, 的。</p><p>16、第八节,一般周期的函数的傅里叶级数,一、以2 l 为周期的函数的,傅里叶展开,机动 目录 上页 下页 返回 结束,二、傅里叶级数的复数形式,第十一章,一、以2 l 为周期的函数的傅里叶展开,周期为 2l 函数 f (x),周期为 2 函数 F(z),变量代换,将F(z) 作傅氏展开,f (x) 的傅氏展开式,机动 目录 上页 下页 返回 结束,设周期为2l 的周期函数 f (x)满足收敛定理。</p><p>17、第三节,一、函数项级数的概念,二、幂级数及其收敛性,三、幂级数的运算,幂级数,机动 目录 上页 下页 返回 结束,第十一章,一、 函数项级数的概念,设,为定义在区间 I 上的函数项级数 .,对,若常数项级数,敛点,所有收敛点的全体称为其收敛域 ;,若常数项级数,为定义在区间 I 上的函数, 称,收敛,发散 ,所有,为其收,为其发散点,发散点的全体称为其发散域 .,机动 目录 上页 下。</p>
【高等数学下册课件】相关PPT文档
高等数学(下册)课件 D8_9二元泰勒公式
高等数学(下册)课件D8_10最小二乘法
高等数学(下册)课件D10_5对坐标曲面积分
高等数学(下册)课件D10_4对面积曲面积分
高等数学(下册)课件 D9_5含参积分
高等数学(下册)课件 D7_3曲面方程
高等数学(下册)课件 D7_1矢量
高等数学(下册)课件 D8_4复合求导
高等数学(下册)课件 D8_3全微分
高等数学(下册)课件 D8_2偏导数
高等数学(下册)课件 D10_6高斯公式
高等数学(下册)课件 D11_5幂级数的应用
高等数学(下册)课件 D12_1基本概念
高等数学(下册)课件 D12习题课(2)
高等数学(下册)课件 D12_10欧拉方程
高等数学(下册)课件 D11_8一般周期的
高等数学(下册)课件 D11_3幂级数
高等数学(下册)课件 D12_9常系数非齐次
高等数学(下册)课件 D12_4一阶线性
高等数学(下册)课件 D11_2数项级数及审敛法
高等数学(下册)课件 D11_7傅立叶级数
高等数学(下册)课件 D12_8常系数齐次
高等数学(下册)课件 D12_3齐次方程
高等数学(下册)课件 D12_6降阶
高等数学(下册)课件 D10_7斯托克斯公式
高等数学(下册)课件 D12习题课(1)
高等数学(下册)课件 D11_6一致收敛
高等数学(下册)课件 D12_2可分离
高等数学(下册)课件 D11_1常数项级数
高等数学(下册)课件 D12_12方程组
高等数学(下册)课件 D12_5全微分方程
高等数学(下册)课件 D12_7高阶线性
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!