高考数学难点突破难点
但将直线方程与其他知识综合的问题是学生比较棘手的. ●难点磁场 (★★★★★)已知|a|<1。逻辑思维能力以及分析问题和解决问题的能力. ●难点磁场 (★★★★)已知a>0。不断加深对集合概念、集合语言、集合思想的理解与应用. ●难点磁场 (★★★★★)已知集合A={(x。
高考数学难点突破难点Tag内容描述:<p>1、2011高考数学难点突破_难点-函数图象函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.难点磁场()已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围.案例探究例1对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(ax),(1)求证y=f(x)的图象关于直线x=a对称;(2)若函数f(x)对一切实数x都有f(x+2)=f(2x),且方程f(x)=0恰好有四个不同实根,求这些实根之。</p><p>2、难点32 极限及其运算极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具.旧教材中原有的数列极限一直是历年高考中重点考查的内容之一.本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题.难点磁场()求.案例探究例1已知(axb)=0,确定a与b的值.命题意图:在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律,既有章可循,有法可依.因而本题重点考查考生的这种能力.也就是本知识的系统掌握能力.属级题目.知识依托:解决本题的闪光点是对式子进行有理。</p><p>3、难点8 奇偶性与单调性(二) 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. 难点磁场 ()已知偶函数f(x)在(0,+)上为增函数,且f(2)=0,解不等式flog2(x2+5x+4)0. 案例探究 例1已知奇函数f(x)是定义在(3,3)上的减函数,且满足不等式f。</p><p>4、难点7 奇偶性与单调性(一) 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. 难点磁场 ()设a0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+)上是增函数. 案例探究 例1已知函数f(x)在(1,1)上有定义,f()=1,当且仅。</p><p>5、难点24 直线与圆锥曲线 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 难点磁场 ()已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1。</p><p>6、难点38 分类讨论思想 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.” 难点磁场 1.()若函数在其定义域内有极值点。</p><p>7、难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. 难点磁场 1.()关于x的不等式。</p><p>8、难点11 函数中的综合问题 函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力. 难点磁场 ()设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x0时f(x)0. (1)求f()、f(。</p><p>9、难点28 求空间距离 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. 难点磁场 ()如图,已知ABCD是矩形,AB=a,AD=b,PA平面ABCD,PA=2c,Q是PA的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. 案例探究 例1把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是A。</p><p>10、难点27 求空间的角 空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想. 难点磁场 ()如图,l为60的二面角,等腰直角三角形MPN的直角顶点P在l上,M,N,且MP与所成的角等于NP与所成的角. (1)求证:MN分别与、所成角相等; (2)求MN与所成角. 案例探究 例1在棱。</p><p>11、难点35 导数的应用问题 利用导数求函数的极大(小)值,求函数在连续区间a,b上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点.本节内容主要是指导考生对这种方法的应用. 难点磁场 ()已知f(x)=x2+c,且ff(x)=f(x2+1) (1)设g(x)=ff(x),求g(x)的。</p><p>12、难点3 运用向量法解题 平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题. 难点磁场 ()三角形ABC中,A(5,1)、B(1,7)、C(1,2),求:(1)BC边上的中线 AM的长;(2)CAB的平分线AD的长;(3)cosABC的值. 案例探究 例1如图,已知。</p><p>13、难点13 数列的通项与求和 数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和Sn可视为数列Sn的通项。通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效。</p><p>14、难点32 极限及其运算 极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具.旧教材中原有的数列极限一直是历年高考中重点考查的内容之一.本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题. 难点磁场 ()求. 案例探究 例1已知(axb)=0,确定a与b的值. 命题意图:在数列与函数极限的运算法则中,都有应遵循的。</p><p>15、难点14 数列综合应用问题 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度。</p><p>16、难点12 等差数列、等比数列的性质运用 等差、等比数列的性质是等差、等比数列的概念,通项公式,前n项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.高考中也一直重点考查这部分内容. 难点磁场 ()等差数列an的前n项的和为30,前2m项的和为100,求它的前3m项的和为__。</p><p>17、难点17 三角形中的三角函数式 三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧. 难点磁场 ()已知ABC的三个内角A、B、C满足A+C=2B.,求cos的值. 案例探究 例1在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30东,俯角为60的B处,到11时10分又测得该船在岛。</p><p>18、难点9 指数函数、对数函数问题 指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题. 难点磁场 ()设f(x)=log2,F(x)=+f(x). (1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明; (2)若f(x)的反函数为f1(x),证明:对任意的自然数n(n3),都有f1(n。</p><p>19、难点2 充要条件的判定 充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系. 难点磁场 ()已知关于x的实系数二次方程x2+ax+b=0有两个实数根、,证明:|2且|2是2|a|4+b且|b|0),若p是q的必要而。</p><p>20、难点4 三个“二次”及关系 三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法. 难点磁场 已知对于x的所有实数值,二次函数f(x)=x24ax+2a+12(aR。</p>