广义胡克定律
二、三向应力状态下的胡克定律。已知铝的 E = 70 GPa、 = 0.33。若不计钢块的变形。试求铝块的主应力。铝块的主应力为。选坐标系如图。已知扭转圆轴的。第七章 应力状态分析 强度理论。7—1 应力状态的概念。应力。变形 刚度条件。2、变形协调方程。一、平面应力状态的广义胡克定律。正应变只跟正应力有关。与正应力无关。
广义胡克定律Tag内容描述:<p>1、1,第六节 广义胡克定律,一、二向应力状态下的胡克定律,二、三向应力状态下的胡克定律,2,例1 已知一开槽钢块,槽内嵌入一边长为10 mm 的正方形铝块。已知铝的 E = 70 GPa、 = 0.33 。若不计钢块的变形,试求铝块的主应力。,解:,由于钢块不变形,故铝块沿 x 方向的线应变等于零,即有,解得,所以,铝块的主应力为,选坐标系如图,显然有,3,例2 如图,已知扭转圆轴的直径 d ,弹性常数 E 与 。若测得圆轴表面某点沿 45方向的线应变 45 ,试求所加扭矩。,解:,该点为纯剪切应力状态,其中,在测点截取单元体,4,45方向为主方向,根据广义胡克定律。</p><p>2、1,第七章 应力状态分析 强度理论,2,第七章 应力状态分析 强度理论, 应力状态的概念 二向应力状态分析解析法 二向应力状态分析图解法 三向应力状态 广义胡克定律 复杂应力状态下的应变能密度 强度理论概述 四种常见的强度理论及强度条件,目录,3,低碳钢,塑性材料拉伸时为什么会出现滑移线?,铸 铁,71 应力状态的概念,4,脆性材料扭转时为什么沿45螺旋面断开?,低碳钢,铸 铁,71 应力状态的概念,5,目录,71 应力状态的概念,6,单元体上没有切应力的面称为主平面;主平面上的正应力 称为主应力,分别用 表示,并且 该单元体称为主单元体。,71 应力。</p><p>3、轴向拉.压,剪 切,扭 转,弯 曲,受力 变形特点,内力,(截面法),轴力 N,剪力 Q 挤压力 Pjy,扭矩 T,剪力 弯矩,应力,强度条件,变形 刚度条件,轴向拉.压,扭 转,弯 曲,虎克定律,超静定 问题,1、静平衡方程,2、变形协调方程,在单元体上两个剪应力共同指定的象限 既为主应力1所在象限,1.应力圆的画法,1.在坐标系中,,2.连D1D2交轴于c点,即以c点为圆心,cd为半径作圆。,(x ,x),(y ,y),量取横坐标OB1=x,,纵坐标B1D1=x得到D1点。,该点的横纵坐标代表单元体以x轴为外法线方向面上的应力情况。同样方法得到D2点。,应力圆,=,圆轴发生扭转变形时,最大拉。</p><p>4、广义胡克定律,主讲教师:王明禄,2019年9月28日星期六,78 广义胡克定律,P,P,=,+,1,2,2,1,一、平面应力状态的广义胡克定律,正应变只跟正应力有关,与剪应力无关;剪应变只跟剪应力有关,与正应力无关;,二、三向应力状态的广义胡克定律,x,y,z,xy,xz,x,y,z,yx,yz,zx,zy,三、主应力状态的广义胡克定律,1,2,3,四、应力-应变关系,例1 已知一受力构件自由表面上某点处的两主应变值为1=24010-6,3=16010-6。材料的弹性模量E =210GPa,泊松比 =0.3。求该点处的主应力值数,并求另一应变2的数值和方向。,解:因主应力和主应变相对应,则由题意可得:。</p>