欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

阶微分方程的解法

得到一阶微分方程组(或一阶微分方程)。得到一阶微分方程组(或一阶微分方程)。因此暂态分析的实质就是如何获得并且求解电路的常微分方程。因此暂态分析的实质就是如何获得并且求解电路的常微分方程。3.3 一阶微分方程的求解。一阶微分方程的求解可归结为在给定初始条件下。用差分方程代替微分方程。用差分方程代替微分方程。

阶微分方程的解法Tag内容描述:<p>1、电路暂态分析的目的是为了得到 电路的时域响应。,建立动态电路的状态方程,得到一阶微分方程组(或一阶微分方程),再求该方程组的解。,因此暂态分析的实质就是如何获得并且求解电路的常微分方程。,3.3 一阶微分方程的求解,一阶微分方程的求解可归结为在给定初始条件下, 求微分方程的初值问题,基本思想: 在初值问题存在唯一解的时间区间内,在若干个时间离散点上,用差分方程代替微分方程,然后逐点求解差分方程,得到各时间离散点 、 处的函数 近似值 、 ,当两相邻离散点之间的间隔较小时,用一阶差商 取代一阶导数,一.前向欧拉法,令步。</p><p>2、二阶微分方程的,习题课 (二),二、微分方程的应用,解法及应用,一、两类二阶微分方程的解法,第七章,一、两类二阶微分方程的解法,1. 可降阶微分方程的解法 降阶法,令,令,逐次积分求解,2. 二阶线性微分方程的解法,常系数情形,齐次,非齐次,代数法,欧拉方程,练习题: P353 题 2 (2); 3 (6) , (7) ; 4 (2);,解答提示,P353 题2 (2) 求以,为通解的微分方程 .,提示: 由通解式可知特征方程的根为,故特征方程为,因此微分方程为,P353 题3 求下列微分方程的通解,提示: (6) 令,则方程变为,特征根:,齐次方程通解:,令非齐次方程特解为,代入方程可得,思 考,。</p><p>3、一阶微分方程的解法,第二节,第八章,一、可分离变量微分方程,二、齐次微风方程,三、一阶线性微分方程,四、伯努利方程* (了解),一、可分离变量微分方程,定义:形如,第八章,或,的方程称为可分离变量方程。,特点:变量x及dx与变量y及dy能分离在方程两端。,分离变量方程的解法:,再两边积分, 得,当G(y)与F(x) 可微且 G (y) g(y) 0 时,的隐函数 y (x) 是的解.,则有,称为方程的隐式通解.,同样, 当 F (x) = f (x)0,时,由确定的隐函数 x(y) 也是的解.,设左右两端的原函数分别为 G(y), F(x),说明由确定,先分离变量:,例1. 求微分方程,的通解.,解: 。</p><p>4、电路暂态分析的目的是为了得到 电路的时域响应。,建立动态电路的状态方程,得到一阶微分方程组(或一阶微分方程),再求该方程组的解。,因此暂态分析的实质就是如何获得并且求解电路的常微分方程。,3.3 一阶微分方程的求解,一阶微分方程的求解可归结为在给定初始条件下, 求微分方程的初值问题,基本思想: 在初值问题存在唯一解的时间区间内,在若干个时间离散点上,用差分方程代替微分方程,然后逐点求解差分方程,得到各时间离散点 、 处的函数 近似值 、 ,当两相邻离散点之间的间隔较小时,用一阶差商 取代一阶导数,一.前向欧拉法,令步。</p>
【阶微分方程的解法】相关PPT文档
《阶微分方程的求解》PPT课件.ppt
阶微分方程的解法及应用习题.ppt
《阶微分方程的解法》PPT课件.ppt
阶微分方程的求解.ppt
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!