几个常用函数的
f(x0))的切线的斜率。无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想。几个常用函数的导数。1.2.1几个常用函数的导数。上面的方法中把x换成x0即为求函数在点x0处的 导数.。被称为函数y=f(x)的导函数.。如果函数y=f(x)在开区间(a。上面的方法中把x换x0即为求函数。
几个常用函数的Tag内容描述:<p>1、1.2.1 几个常用函数的导数,不能依交点是一个来定切线,一、复习:,(1)求出函数在点x0处的变化率 ,得到曲线 在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,3.求切线方程有几个步骤?,无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。,二、新课:几个常用函数的导数:,见书P13,答:(1)2、3、4,(2)y=4x最快,y=2x最慢,(3)与k有关,见书P14,分子有理化,例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点, (1)求过点P的曲线y=x2的切线方程。 (2)求过点Q的曲。</p><p>2、1.2.1几个常用函数的导数,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换成x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换成x0即为求函数在点x0处的导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。,4.函数 y=f(x)在点x。</p><p>3、1.2.1几个常用函数的导数,如果将x0改为x,则求得的是,被称为函数y=f(x)的导函数.,复习回顾,如果函数y=f(x)在开区间(a,b)内的每点处都有导数,此时对于每一个x(a,b),都对应着一个确定的导数 ,从而构成了一个新的函数 。称这个函数 为函数y=f(x)在开区间内的导函数,简称导数,也可记作 ,即,例1:已知函数 y = (1)求y (2)求函数 y = 在 x = 2 处的导数,解:函数改变量,算比值,取极限,所以,练习1、求函数y=f(x)=c的导数。,因为,所以,因为,所以,练习2、求函数y=f(x)=x的导数,因为,所以,练习3、求函数y=f(x)=x2的导数,你能不能求出函数y=f(x)。</p><p>4、几个常用函数的导数,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换x0即为求函数在点x0处的 导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。,4.函数 y=f(x)在点x0处的导。</p><p>5、3.2导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式学习目标1.能根据定义求函数yc,yx,yx2,y,y的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数知识点一几个常用函数的导数原函数导函数f(x)cf(x)0f(x)xf(x)1f(x)x2f(x)2xf(x)f(x)f(x)f(x)知识点二基本初等函数的导数公式原函数导函数f(x)c(c为常数)f(x)0f(x)x(Q*)f(x)x1f(x)sinxf(x)cos_xf(x)cosxf(x)sin_xf(x)axf(x)axln_a(a0)f(x)exf(x)exf(x)logaxf(x)(a0,且a1)f(x)lnxf(x)1若y,则y3.()2若f。</p>