欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

平面向量数系的扩充与

全国卷Ⅲ)已知向量=。则∠ABC=( A )。A.30&#176。     B.45&#176。     C.60&#176。     D.120&#176。所以∠ABC=30&#176。[解密考纲]本考点重点考查向量的概念、线性运算、平面向量的基本定理及坐标表示。A.a-b          B.a+b。A.A。

平面向量数系的扩充与Tag内容描述:<p>1、2018年高考数学一轮复习 第四章 平面向量、数系的扩充与复数的引入 第26讲 平面向量的数量积与平面向量应用举例实战演练 理1(2016全国卷)已知向量,则ABC(A)A30B45C60D120解析:cosABC,所以ABC30.2(2016天津卷)已知ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE2EF,则的值为(B)ABCD解析:建立如图所示的平面直角坐标系则B,C,A,所以(1,0)易知DEAC,FECACE60,则EFAC,所以点F的坐标为,所以,所以(1,0).故选B3(2016山东卷)已知非零向量m,n满足4|m|3|n|,cosm,n,若n(t mn),则实数t的值为(B。</p><p>2、第25讲 平面向量基本定理及坐标运算解密考纲本考点重点考查向量的概念、线性运算、平面向量的基本定理及坐标表示,多以选择题、填空题的形式呈现,难度中等偏下一、选择题1若向量(2,4),(1,3),则(B)A(1,1)B(1,1)C(3,7)D(3,7)解析因为(2,4),(1,3),所以(1,3)(2,4)(1,1),故选B2已知向量m(a,2),n(1,1a),且mn,则实数a(B)A1B2或1C2D2解析因为mn,所以a(1a)2,即a2a20,解得a1或a2,故选B3在平面直角坐标系xOy中,已知点O(0,0),A(0,1),B(1,2),C(m,0)若,则实数m(C)A2BCD2解析在平面直角坐标系xOy中,点O(0,0),A(0,1),B(1,2),C。</p><p>3、第一节 平面向量的概念及线性运算课时作业A组基础对点练1(2017杭州模拟)在ABC中,已知M是BC中点,设a,b,则()A.abB.abCab Dab解析:ba,故选A.答案:A2已知a2b,5a6b,7a2b,则下列一定共线的三点是()AA,B,CBA,B,DCB,C,D DA,C,D解析:因为3a6b3(a2b)3,又,有公共点A.所以A,B,D三点共线答案:B3已知向量a,b,c中任意两个都不共线,但ab与c共线,且bc与a共线,则向量abc()Aa BbCc D0解析:依题意,设abmc,bcna,则有(ab)(bc)mcna,即acmcna.又a与c不共线,于是有m1,n1,abc,abc0.答案:D4设D,E,F分别为ABC的三边BC,CA,A。</p><p>4、第二节 平面向量的基本定理及坐标表示课时作业A组基础对点练1已知点A(0,1),B(3,2),向量(4,3),则向量()A(7,4)B(7,4)C(1,4) D(1,4)解析:设C(x,y),则(x,y1)(4,3),所以从而(4,2)(3,2)(7,4)故选A.答案:A2已知向量a(2,4),b(1,1),则2ab()A(5,7) B(5,9)C(3,7) D(3,9)解析:由a(2,4)知2a(4,8),所以2ab(4,8)(1,1)(5,7)故选A.答案:A3设向量a(2,4)与向量b(x,6)共线,则实数x()A2 B3C4 D6解析:由向量a(2,4)与向量b(x,6)共线,可得4x26,解得x3.答案:B4已知向量a(2,3),b(1,2),若(manb)(a2b),则等于()A2 B2C D。</p><p>5、第25讲平面向量基本定理及坐标运算考纲要求考情分析命题趋势1了解平面向量的基本定理及其意义2掌握平面向量的正交分解及其坐标表示3会用坐标表示平面向量的加法、减法与数乘运算4理解用坐标表示的平面向量共线的条件2017全国卷,122017全国卷,122017江苏卷,122016四川卷,10对平面向量基本定理及坐标表示的考查主要是加、减、数乘及向量共线定理的坐标表示及应用分值:5分1两个向量的夹角(1)定义已知两个__非零__向量a和b,作a,b,则AOB叫做向量a与b的夹角(2)范围向量夹角的范围是!0,#,a与b同向时,夹角!0#;a与b反向时,夹角!180。</p>
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!