斯托克斯定理
8-6 高斯公式与斯托克斯公式 格林公式表达了平面区域上二重积分与其边界曲线上的曲 线积分之间的关系。高斯公式表达了空间区域 上三重积分与区域边界曲面上曲面积分之间的关系。则高斯公式可写成 上式在物理上称为向量 通过曲面S的通量. 即。第七节、斯托克斯公式与旋度。一、斯托克斯(stokes)公式。
斯托克斯定理Tag内容描述:<p>1、第六节 Green 公式Gauss 公式 推广 一、高斯公式 *二、沿任意闭曲面的曲面积分为零的条件 三、通量与散度 机动 目录 上页 下页 返回 结束 高斯公式 通量与散度 第十一章 一、高斯 ( Gauss ) 公式 定理1. 设空间闭区域 由分片光滑的闭曲 上有连续的一阶偏导数 , 下面先证: 函数 P, Q, R 在面 所围成, 的方向取外侧, 则有 (Gauss 公式) 高斯 目录 上页 下页 返回 结束 证明: 设 为XY型区域 , 则 定理1 目录 上页 下页 返回 结束 所以 若 不是 XY型区域 , 则可引进辅助面 将其分割成若干个 XY型区域, 故上式仍成立 .正反两侧面积分正负抵消, 。</p><p>2、8-6 高斯公式与斯托克斯公式 格林公式表达了平面区域上二重积分与其边界曲线上的曲 线积分之间的关系。而在空间上,高斯公式表达了空间区域 上三重积分与区域边界曲面上曲面积分之间的关系。 定理1 (高斯公式 ) 则有 1.高斯公式 记做 ,则高斯公式可写成 上式在物理上称为向量 通过曲面的通量 即: 通过闭曲面的通量,等于其散度在所 包围的区域 上的三重积分 记 的散度, 定义 为向量函数(场) 证 对于一般的区域 则可引进辅助面将其分割成 若干个 与上类似的小区域, 则在每个小区域上式成立. 故上式仍成立 . 然后相加,因为在辅助面正反。</p><p>3、第一章矢量分析,主要内容梯度、散度、旋度、亥姆霍兹定理,1.标量场的方向导数与梯度2.矢量场的通量与散度3.矢量场的环量与旋度4.无散场和无旋场5.格林定理6.矢量场的惟一性定理7.亥姆霍兹定理8.正交曲面坐标系,1.标量场的方向导数与梯度,方向导数:标量场在某点的方向导数表示标量场自该点沿某一方向上的变化率。,例如标量场在P点沿l方向上的方向导数定义为,梯度:标量场在某点梯度的。</p><p>4、第七节、斯托克斯公式与旋度,一、斯托克斯(stokes)公式,二、空间曲线积分与路径无关的条件,三、 环流量与旋度,四、向量微分算子,一、斯托克斯(stokes)公式,斯托克斯公式,是有向曲面 的 正向边界曲线,右手法则,证明,如图,思路,曲面积分,二重积分,曲线积分,1,2,1,根椐格林公式,平面有向曲线,2,空间有向曲线,同理可证,故有结论成立.,情形2 曲面 与平行 z 轴的直线交点多于一个,则可,通过作辅助线面把 分成与z 轴只交于一点的几部分,在每一部分上应用斯托克斯公式, 然后相加,由于沿辅助,曲线方向相反的两个曲线积分相加刚好抵消,所以对这,类曲。</p>