线性代数知识点总结
2. 行列式按行(列)展开法则。①行列式按行(列)展开定理。 一、行列式的定义和性质。理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律。1. 行列式的三种展开定义。1. 行列式的三种展开定义。性质2 互换行列式的两行(列)。性质5 若行列式的某一列(行)的元素都是两数之和.。
线性代数知识点总结Tag内容描述:<p>1、线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。(5)一行(列)乘k加到另一行(列),行列式的值不变。(6)两行成比例,行列式的值为0。(二)重要行列式4、上(。</p><p>2、线性代数复习要点第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算行列式的定义 1. 行列式的计算: (定义法)(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. 若都是方阵(不必同阶),则 关于副对角线: 范德蒙德行列式: 型公式: (升阶法)在原行列式中增加一行一列,保。</p><p>3、概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确:全体维实向量构成的集合叫做维向量空间. 关于:称为的标准基,中的自然基,单位坐标向量;线性无关;任意一个维向量都可以用线性表示.行列式的定义 行列式的计算:行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.若都是方阵(不必同阶),则(拉普拉斯展开式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.关于副对角线: (即。</p><p>4、第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性。</p><p>5、线性代数公式1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:、和的大小无关;、某行(列)的元素乘以其它行(列)元素的代数余子式为0;、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:、主对角行列式:主对角元素的乘积;、副对角行列式:副对角元素。</p><p>6、1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:、和的大小无关;、某行(列)的元素乘以其它行(列)元素的代数余子式为0;、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:、主对角行列式:主对角元素的乘积;、副对角行列式:副对角元素的乘积;、上。</p><p>7、第二章 矩阵及其运算矩阵是线性代数主要研究对象,是求解线性方程组的一个有力工具,它在自然科学、工程技术及经济问题等各个领域中都有广泛的应用。本章的教学基本要求:理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,了解求逆矩阵的伴随矩阵法;熟练掌握利用逆矩阵求解矩阵方程的方法;了解单位矩阵、对角矩阵、对称矩阵及其性质;了解分块矩阵及其运算。本章的重点及难点:矩阵的各种运算及其运算规律,尤其矩阵的乘法;逆矩阵存在的条件,利用伴随矩阵法会求逆矩阵,主要是二。</p><p>8、线性代数复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似。</p><p>9、说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。2.知识点会了不一定做的对题,所以还要有相应的练习题。3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。第1章 行列式1. 行列式的定义式(两种定义式)行列式的性质对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。2. 行列式的应用克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。总结:期末第。</p><p>10、复习总结,1. 行列式的三种展开定义:,按行指标展开,,按列指标展开,,完全展开,,复习总结,性质1 行列式与它的转置行列式相等.,性质2 互换行列式的两行(列),行列式变号.,推论 如果行列式有两行(列)完全相同,,则此行列式为零.,性质5 若行列式的某一列(行)的元素都是两数之和.,性质 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变,计算行列式常用方法:利用运算 把行列式化为上三角形行列式,从而算得行列式的值,复习总结,定理 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积。</p><p>11、分量全为实数的向量称为实向量,分量全为复数的向量称为复向量, 向量的定义,定义,向量的相等,零向量,分量全为0的向量称为零向量,负向量,向量加法, 向量的线性运算,数乘向量,向量加法和数乘向量运算称为向量的线性运 算,满足下列八条运算规则:,除了上述八条运算规则,显然还有以下性质:,若干个同维数的列(行)向量所组成的集合 叫做向量组,定义, 线性组合,定义, 线性表示,定理,定义,定义, 线性相关,定理,定理,定义, 向量组的秩,等价的向量组的秩相等,定理,矩阵的秩等于它的列向量组的秩,也等于 它的行向量组的秩,定理,设向量组B能由向。</p><p>12、矩阵,矩阵是线性代数的核心,矩阵的概念、运算及理论贯穿线性代数的始终,对矩阵的理解与掌握要扎实深入。,理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩 阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律, 了解方阵的幂与方阵乘积的行列式。正确理解逆矩阵的概 念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件, 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。掌握矩阵 的初等变换,了解初等矩阵的性质和矩阵等价的概念,正 确理解矩阵的秩的概念,熟练掌握用初等变换求。</p><p>13、复习总结,1. 行列式的三种展开定义:,按行指标展开,,按列指标展开,,完全展开,,复习总结,性质1 行列式与它的转置行列式相等.,性质2 互换行列式的两行(列),行列式变号.,推论 如果行列式有两行(列)完全相同,,则此行列式为零.,性质5 若行列式的某一列(行)的元素都是两数之和.,性质 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变,计算行列式常用方法:利用运算 把行列式化为上三角形行列式,从而算得行列式的值,复习总结,定理 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积。</p><p>14、考研数学线性代数考点总结 在考研数学考试中,线性代数占总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。出guo为大家提供考研数学线性代数考点总结,帮助大家复习好线性代数考点! 在。</p><p>15、线性代数 复习提纲 第一章 行列式 值 不是矩阵 1 行列式的定义 用个元素组成的记号称为n阶行列式 1 它表示所有可能的取自不同行不同列的n个元素乘积的代数和 2 展开式共有n 项 其中符号正负各半 2 行列式的计算 一。</p><p>16、线性代数必考的知识点 1 行列式 1 行列式共有个元素 展开后有项 可分解为行列式 2 代数余子式的性质 和的大小无关 某行 列 的元素乘以其它行 列 元素的代数余子式为0 某行 列 的元素乘以该行 列 元素的代数余子式为 3 代数余子式和余子式的关系 4 设行列式 将上 下翻转或左右翻转 所得行列式为 则 将顺时针或逆时针旋转 所得行列式为 则 将主对角线翻转后 转置 所得行列式为 则 将主副。</p>