标签 > 圆锥曲线的综合问题第2课时[编号:6998889]
圆锥曲线的综合问题第2课时
则直线l的斜率的取值范围是( )。第2课时 范围、最值问题。直线FM被圆x2+y2=截得的线段的长为c。(1)求直线FM的斜率。解 (1)设C(x。贵阳监测)已知椭圆C。(1)求椭圆C的方程。(1)求椭圆C的方程。2)的直线l与椭圆C交于A。求直线l的斜率k的取值范围.。(1)求椭圆M的方程。
圆锥曲线的综合问题第2课时Tag内容描述:<p>1、2018版高考数学大一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、范围、最值问题试题 理 新人教版基础巩固题组(建议用时:40分钟)一、选择题1.设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()A. B.2,2C.1,1 D.4,4解析Q(2,0),设直线l的方程为yk(x2),代入抛物线方程,消去y整理得k2x2(4k28)x4k20,由(4k28)24k24k264(1k2)0,解得1k1.答案C2.(2017石家庄模拟)已知P为双曲线C:1上的点,点M满足|1,且0,则当|取得最小值时点P到双曲线C的渐近线的距离为()A。</p><p>2、第2课时范围、最值问题题型一范围问题例1(2015天津)已知椭圆1(ab0)的左焦点为F(c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2y2截得的线段的长为c,FM.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围解(1)由已知,有,又由a2b2c2,可得a23c2,b22c2.设直线FM的斜率为k(k0),F(c,0),则直线FM的方程为yk(xc)由已知,有222,解得k.(2)由(1)得椭圆方程为1,直线FM的方程为y(xc),两个方程联立,消去y,整理得3x22cx5c20,解得xc或xc.因为点M在第一象限,可得M。</p><p>3、第2课时范围、最值问题题型一范围问题例1(2015天津)已知椭圆1(ab0)的左焦点为F(c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2y2截得的线段的长为c,|FM|.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围解(1)由已知,有,又由a2b2c2,可得a23c2,b22c2.设直线FM的斜率为k(k0),F(c,0),则直线FM的方程为yk(xc)由已知,有222,解得k.(2)由(1)得椭圆方程为1,直线FM的方程为y(xc),两个方程联立,消去y,整理得3x22cx5c20,解得xc或xc.因为点M在第一象限,可。</p><p>4、第2课时定点、定值、开放问题考点一定点问题【例1】 (2019咸阳二模)已知A(2,0),B(2,0),点C是动点,且直线AC和直线BC的斜率之积为.(1)求动点C的轨迹方程;(2)(一题多解)设直线l与(1)中轨迹相切于点P,与直线x4相交于点Q,判断以PQ为直径的圆是否过x轴上一定点.解(1)设C(x,y).由题意得kACkBC(y0).整理,得1(y0).故动点C的轨迹方程为1(y0).(2)法一易知直线l的斜率存在,设直线l:ykxm.联立得方程组消去y并整理,得(34k2)x28kmx4m2120.依题意得(8km)24(34k2)(4m212)0,即34k2m2.设x1,x2为方程(34k2)x28kmx4m2120的两个根,则x1x2,x1x2.。</p><p>5、第2课时范围、最值问题范围问题【例1】(2018贵阳监测)已知椭圆C:1(ab0)的离心率为,且椭圆C上的点到一个焦点的距离的最小值为.(1)求椭圆C的方程;(2)已知过点T(0,2)的直线l与椭圆C交于A,B两点,若在x轴上存在一点E,使AEB90,求直线l的斜率k的取值范围解(1)设椭圆的半焦距长为c,则由题设有解得a,c,b21,故椭圆C的方程为x21.(2)由已知可得,以AB为直径的圆与x轴有公共点设A(x1,y1),B(x2,y2),AB中点为M(x0,y0),将直线l:ykx2代入x21,得(3k2)x24kx10,12k212,x1x2,x1x2.x0,y0kx02,|AB|x1x2|,由题意可得解得k413,即k或k.故。</p><p>6、第2课时范围、最值问题范围问题【例1】(2018贵阳监测)已知椭圆C:1(ab0)的离心率为,且椭圆C上的点到一个焦点的距离的最小值为.(1)求椭圆C的方程;(2)已知过点T(0,2)的直线l与椭圆C交于A,B两点,若在x轴上存在一点E,使AEB90,求直线l的斜率k的取值范围解(1)设椭圆的半焦距长为c,则由题设有解得a,c,b21,故椭圆C的方程为x21.(2)由已知可得,以AB为直径的圆与x轴有公共点设A(x1,y1),B(x2,y2),AB中点为M(x0,y0),将直线l:ykx2代入x21,得(3k2)x24kx10,12k212,x1x2,x1x2.x0,y0kx02,|AB|x1x2|,由题意可得解得k413,即k或k.故。</p><p>7、第2课时 最值、范围、证明专题课时作业1设椭圆M:1(ab0)的离心率与双曲线x2y21的离心率互为倒数,且内切于圆x2y24.(1)求椭圆M的方程;(2)若直线yxm交椭圆于A,B两点,且P(1,)为椭圆上一点,求PAB的面积的最大值解:(1)由双曲线的离心率为,得椭圆的离心率e.易知圆x2y24的直径为4,所以2a4.由得故椭圆M的方程为1.(2)设A(x1,y1),B(x2,y2)由得4x22mxm240.由(2m)216(m24)0,得2m2.x1x2m,x1x2,|AB|x1x2|.又点P到直线AB的距离d,则SPAB|AB|d,当且仅当m2(2,2)时取等号故PAB的面积的最大值为.2已知圆G:x2y22xy0经过椭圆1(ab0)的右焦点F及。</p>