章函数概念与基本初等函数
3.9 函数模型及其应用。函数模型。第3节 函数的单调性与最值。2.会运用基本初等函数的图象分析函数的性质.。1.函数的单调性。(1)单调函数的定义。设函数f(x)的定义域为I。掌握对数函数的图象、性质及应用.。以复合函数的形式考查对数函数的图象与性质。3.7 函数的图象。对数函数及五种幂函数的图象和性质.。
章函数概念与基本初等函数Tag内容描述:<p>1、第3节函数的单调性与最值考试要求1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图象分析函数的性质.知 识 梳 理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严格的)单调性,区间D叫做函数yf(x)的单调区间.2.函数的最值。</p><p>2、3.6对数与对数函数最新考纲考情考向分析1.理解对数的概念,掌握对数的运算,会用换底公式2.理解对数函数的概念,掌握对数函数的图象、性质及应用3.了解对数函数的变化特征.以比较对数函数值大小的形式考查函数的单调性;以复合函数的形式考查对数函数的图象与性质,题型一般为选择、填空题,中低档难度.1对数的概念一般地,如果axN(a0,且a1),那么数x叫做以a为底N的对数,记作xlogaN,其中a叫做对数的底数,N叫做真数2对数的性质与运算法则(1)对数的运算法则如果a0,且a1,M0,N0,那么:loga(MN)logaMlogaN;logalogaMlogaN;logaMnnlog。</p><p>3、3.7函数的图象最新考纲考情考向分析1.了解函数的三种表示法(解析法、图象法和列表法)2.掌握指数函数,对数函数及五种幂函数的图象和性质.函数图象的辨析;函数图象和函数性质的综合应用;利用图象解方程或不等式,题型以选择题为主,中档难度.1描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象2图象变换(1)平移变换(2)对称变换yf(x)yf(x);yf(x)yf(x);yf(x)yf(x);yax (a0且a1)ylogax(a0且a1)(3)伸缩变换yf(x)yf(ax)yf(x)ya。</p><p>4、3.4 幂函数与二次函数,第三章 函数概念与基本初等函数,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.幂函数 (1)幂函数的定义 一般地,形如 的函数称为幂函数,其中x是自变量,是常数. (2)常见的五种幂函数的图象和性质比较,yx,知识梳理,ZHISHISHULI,x|x0,x|x0,y|y0,y|y0,y|y0,(,0,(0,),0,),奇,偶,奇,非奇非偶,奇,(,0),(0,),(1,1),2.二次函数的图象和性质,R,R,1.二次函数的解析式有哪些常用形式?,提示 (1)一般式:yax2bxc(a0); (2)顶点式:ya(xm)2n(a0); (3)零点式:ya(x。</p>