主成分分析和因子分析
6.1.1 主成分分析的概念与步骤 1. 主成分分析基本思想 主成分分析是数学上对数据降维的一种方法。1.主成分分析的基本思想 2.主成分分析的软件实现和结果分析 3.因子分析的基本思想 4.因子分析的软件实现和结果分析。主成分分析就是要求p个指标的综合指标F1。
主成分分析和因子分析Tag内容描述:<p>1、第13章主成分分析和因子分析,13.1主成分分析,13.1.1主成分分析的基本原理13.1.2主成分分析的数学模型13.1.3主成分分析的步骤13.1.4主成分分析的Stata命令,主成分的概念由KarlPearson在1901年提出考察多个变量间相关性一种多元统计方法研究如何通过少数几个主成分(principalcomponent)来解释多个变量间的内部结构。即从原始变量中导出少数几个主分量。</p><p>2、因子分析是主成分分析的推广和发展,它也是将具有错综复杂关系的变量(或样品)综合为数量较少的几个因子,以再现原始变量与因子之间的相互关系,同时根据不同因子还可以对变量进行分类,它也是属于多元分析中处理降维的一种统计方法。因子分析的内容十分丰富,这里仅介绍因子分析常用一种类型:R型因子分析(对变量做因子分析)。基本思想:因子分析的基本思想是通过变量(或样品)的相关系数矩阵(对样品是相似系数矩阵)内部结构的研究,找出能控制所有变量(或样品)的少数几个随机变量去描述多个变量(或样品)之间的相关(相似)关。</p><p>3、主成分分析与因子分析,英国统计学家Moser Scott 1961年在对英国157个城镇发展水平进行调查时,原始测量的变量有57个,而通过因子分析发现,只需要用5个新的综合变量(它们是原始变量的线性组合),就可以解释95的原始信息。对问题的研究从57维度降低到5个维度,因此可以进行更容易的分析。,著名的因子分析研究,美国统计学家Stone在1947年关于国民经济的研究,它根据美国1927年到1938年的数据,得到17个反映国民收入与支出的变量要素,经过因子分析,得到了3个新的变量,可以解释17个原始变量97.4的信息。根据这3个因子变量和17个原始变量的。</p><p>4、中央财经大学统计学院,第10章 主成分分析与因子分析,主成分分析 因子分析,中央财经大学统计学院 2,学习目标,1.主成分分析的基本思想 2.主成分分析的软件实现和结果分析 3.因子分析的基本思想 4.因子分析的软件实现和结果分析,中央财经大学统计学院,主成分分析,中央财经大学统计学院 4,主成分分析的原理,多元统计分析处理的是多变量(多指标)问题。由于变量较多,增加了分析问题的复杂性。但在实际问题中,变量之间可能存在一定的相关性,因此,多变量中可能存在信息的重叠。人们自然希望通过克服相关性、重叠性,用较少的变量来代替原来。</p><p>5、matlab中主成分分析的函数 1.princomp功能:主成分分析格式:PC=princomp(X)PC,SCORE,latent,tsquare=princomp(X)说明:PC,SCORE,latent,tsquare=princomp(X)对数据矩阵X进行主成分分析,给出各主成分 (PC)、所谓的Z-得分(SCORE)、X的方差矩阵的特征值(latent)和每个数据点的HotellingT2统计 量(tsquare)。2.pcacov功能:运用协方差矩阵进行主成分分析格式:PC=pcacov(X)。</p><p>6、主成分分析和因子分析,汇报什么?,假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、利润、折旧、职工人数、职工的分工和教育程度等等。 如果让你向上面介绍公司状况,你能够把这些指标和数字都原封不动地摆出去吗? 当然不能。 你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。,对众多变量进行降维,每个人都会遇到有很多变量的数据。 比如全国或各个地区的带有许多经济和社会变量的数据;各个学校的研究、教学等各种变量。</p><p>7、1,第十三章 主成分分析和因子分析,在建立多元回归模型时,为了更准确地反映事物的特征,人们经常会在模型中包含较多相关解释变量,这不仅使得问题分析变得复杂,而且变量之间可能存在多重共线性,使得数据提供的信息发生重叠,甚至会抹杀事物的真正特征。为了解决这些问题,需要采用降维的思想,将所有指标的信息通过少数几个指标来反映,在低维空间将信息分解为互不相关的部分以获得更有意义的解释。本章介绍的主成分分析和因子分析可用于解决这类问题。,2,主成分分析(principal components analysis,简称PCA)是由霍特林(Hotelling)。</p><p>8、第八章 主成分分析与因子分析,Principle Component Analysis & Factor Analysis,8-1 概述,在许多研究中,为了全面系统地分析问题,都尽可能完整地搜集信息,对每个观测对象往往需测量很多指标(变量),人们自然希望用较少的新变量代替原来较多的旧变量,而这些新变量应尽可能地反映旧变量的信息. 主成分分析与因子分析正是满足这一要求的处理多变量问题的方法.由于它们能浓缩信息,使指标降维,简化指标的结构,使分析问题简单、直观、有效,故被广泛应用于医学、心理学、经济学等领域.,参考文献,1、综合评价中如何运用主成分分析。 作者:朱峰统计。</p><p>9、1,第十三章 主成分分析和因子分析,在建立多元回归模型时,为了更准确地反映事物的特征,人们经常会在模型中包含较多相关解释变量,这不仅使得问题分析变得复杂,而且变量之间可能存在多重共线性,使得数据提供的信息发生重叠,甚至会抹杀事物的真正特征。为了解决这些问题,需要采用降维的思想,将所有指标的信息通过少数几个指标来反映,在低维空间将信息分解为互不相关的部分以获得更有意义的解释。本章介绍的主成分分析和因子分析可用于解决这类问题。,2,主成分分析(principal components analysis,简称PCA)是由霍特林(Hotelling)。</p><p>10、2019-6-8,模型选择是艺术,而不是科学。 William Navidi,统计名言,第 12 章 主成分分析和因子分析,12.1 主成分分析 12.2 因子分析,factor analysis,2019-6-8,学习目标,主成分分析和因子分析的基本原理 主成分分析和因子分析的异同 主成分分析和因子分析的数学模型 用SPSS进行主成分分析和因子分析 用主成分分析和因子分析对实际问题进行综合评价,2019-6-8,在研究实际问题时,往往需要收集多个变量。但这样会使多个变量间存在较强的相关关系,即这些变量间存在较多的信息重复,直接利用它们进行分析,不但模型复杂,还会因为变量间存在多重。</p><p>11、因子分析与主成分分析,电子工业出版社,提 纲,1. 基本原理 2.因子分析 3.主成分分析 4.本章小结,基本原理,主成分分析(Primary Component Analysis)主要是通过降维过程,将多个相关联的数值指标转化为少数几个互不相关的综合指标的统计方法,即用较少的指标来代替和综合反映原来较多的信息,这些综合后的指标就是原来多指标的主要成分。 主成分分析作为一种探索性的技术,是在分析者进行多元数据分析之前用来分析数据,让自己对数据有一个大致的了解,这对于实际应用是非常重要的。,基本原理,主成分分析只是一种中间手段,其背景是研究中。</p><p>12、第13章 主成分分析与因子分析,介绍: 1、主成分分析与因子分析的概念 2、主成分分析与因子分析的过程,主成分分析与因子分析的概念,需要与可能:在各个领域的科学研究中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为科学研究提供丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在大多数情况下,许多变量之间可能存在相关性而增加了问题分析的复杂性,同时对分析带来不便。如果分别分析每个指标,分析又可能是孤立的,而不是综合的。盲目减少指标会损失很多信息。</p>