翻译原文.pdf_第1页
翻译原文.pdf_第2页
翻译原文.pdf_第3页
翻译原文.pdf_第4页
翻译原文.pdf_第5页
已阅读5页,还剩3页未读 继续免费阅读

翻译原文.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ABSTRACTACOMPACTANDEFFICIENTFLYWHEELENERGYSTORAGESYSTEMISPROPOSEDINTHISPAPERTHESYSTEMISASSISTEDBYINTEGRATEDMECHANICALANDMAGNETICBEARINGS,THEFLYWHEELACTSASTHEROTOROFTHEDRIVESYSTEMANDISSANDWICHEDBETWEENTWODISKTYPESTATORSTOSAVESPACETHECOMBINEDUSEOFACTIVEMAGNETICBEARINGS,MECHANICALBEARINGSANDAXIALFLUXPMSYNCHRONOUSMACHINEASSISTSTHEROTORFLYWHEELTOSPINANDREMAININMAGNETICLEVITATIONINTHEVERTICALORIENTATION,WHILECONSTRAINSTHEOTHERFOURDEGREESOFFREEDOMINRADIALDIRECTIONSMECHANICALLYTHEMATHEMATICALMODELOFTHEPROPOSEDSYSTEMHASBEENDERIVEDTHREEDIMENSIONALFINITEELEMENTMETHODISAPPLIEDFORSTUDYINGTHEPERFORMANCESANDVERIFYINGTHEMATHEMATICALMODELOFTHESYSTEMTHEANALYSISRESULTSSUPPORTTHEFEASIBILITYOFTHESYSTEMIINTRODUCTIONNMODERNPOWERINDUSTRIES,WITHTHEADVANCESOFHIGHSTRENGTHANDLIGHTWEIGHTCOMPOSITEMATERIAL,CONTROLTECHNOLOGYANDPOWERELECTRONICS,THEFLYWHEELENERGYSTORAGESYSTEMFESSISBECOMINGAVIABLEALTERNATIVETOTRADITIONALCHEMICALBATTERYSYSTEMS,WITHITSADVANTAGESSUCHASHIGHERENERGYSTORAGEDENSITY,LOWERRISKOFOVERCHARGEANDOVERDISCHARGE,EASIERDETECTIONOFTHEDEPTHOFDISCHARGE,OPERATIONOVERAWIDERTEMPERATURERANGE,LONGERLIFESPANANDENVIRONMENTALFRIENDLINESS14ASARESULT,FESSISNOWCONSIDEREDAPROMISINGTECHNOLOGYFORMANYAPPLICATIONSINCLUDINGSPACEFLIGHT,TRANSPORTATION,POWERINDUSTRY,MILITARY,ANDBUILDINGSERVICESINGENERAL,AFLYWHEELENERGYSTORAGESYSTEMISCOMPOSEDOFAFLYWHEEL,MAGNETICORMECHANICALBEARINGSTHATSUPPORTTHEFLYWHEEL,AMOTORGENERATORTODRIVETHEFLYWHEELANDINTERCONVERTTHEMECHANICALENERGYANDELECTRICALENERGY,CONTROLANDPOWERELECTRONICDEVICES,ANDTOUCHDOWNBEARINGSTHISSEPARATEDRIVINGMOTORGENERATORINADDITIONTOMAGNETICBEARINGSMAKESTHEROTORLONGANDAPTTOPRODUCEBENDINGVIBRATIONSANDTHELARGEMOTORBEARINGSYSTEMMAKESITDIFFICULTFORMINIATURIZATION5TOOVERCOMETHESEPROBLEMS,ASELFBEARINGPERMANENTMAGNETMOTORISINTRODUCEDTHEMOTORCOMBINESMAGNETICBEARINGANDMOTORINGFUNCTIONALITYINTOASINGLEMAGNETICACTUATORSUCHDESIGNSCANREDUCETHEOVERALLLENGTHOFAMOTORBECAUSELESSMECHANICALBEARINGSAREREQUIRED,THUSINCREASINGPOWERDENSITY,REDUCINGWEIGHT,ANDLOWERINGSUSCEPTIBILITYTOROTORDYNAMICVIBRATIONS6ASSHOWNINFIG1,THEREARETHREEDIRECTIONSALONGX,YANDZAXESWITHINTHEFLYWHEEL,SUCHTHATSIXDEGREESOFFREEDOMDOFWHICHARETHEDISPLACEMENTANDROTATIONOFEVERYAXISSHOULDBECONTROLLEDWITHTHEHELPOFMECHANICALORMAGNETICBEARINGSMECHANICALBEARINGSHAVETHEADVANTAGESOFSIMPLESTRUCTUREANDEASYOPERATION,BUTTHEFRICTIONALLOSSANDTHEREBY,THEUSEOFLUBRICATIONSHOULDALWAYSBETAKENINTOCONSIDERATIONESPECIALLY,THEFRICTIONOCCURRINGONTHEBEARINGWHICHISALONGTHEDIRECTIONOFTHEGRAVITY,IE,THEDIRECTIONALONGZAXISINFIG1,ISMUCHGREATERTHANTHOSEINTHEOTHERDIRECTIONSFORTHISREASON,ITISNOTPRACTICALTOUSEMECHANICALBEARINGSALONGTHISAXIS,WHILEFORTHEOTHERAXES,THEYCANSTILLBETOLERATEDACTIVEMAGNETICBEARINGSHAVEMANYADVANTAGESOVERTHECONVENTIONALBEARINGSSUCHBENEFITSINCLUDEHIGHERENERGYEFFICIENCY,LOWERWEAR,LONGERLIFESPAN,ABSENCEOFNEEDOFLUBRICATIONANDMECHANICALMAINTENANCE,ANDWIDERRANGEOFOPERATINGTEMPERATURESTHEREAREMANYSTUDIESCONCERNINGMAGNETICBEARINGS,BUTMOSTOFTHEMTREATTHEBEARINGINWHICHATLEASTFIVEDOFOFTHEOBJECTARECONTROLLEDSINCETHECONTROLOFEACHDOFREQUIRESASENSOR,ANACTUATORANDACONTROLLER,THEENTIRESYSTEMBECOMESCOMPLEXINTERMSOFTHEDESIGNOFITSMECHANICAL/ELECTRICALPARTANDTHECONTROLSYSTEM7CONSIDERINGTHIS,THISPAPERPRESENTSANEWCONCEPTOFMAGNETICBEARING,INWHICHONLY2DOFOFANAXIS,NAMELY,THETRANSLATIONANDROTATIONALONGANDABOUTAXIALDIRECTIONSRESPECTIVELY,AREACTIVELYCONTROLLEDTHEMOTIONSINOTHERDIRECTIONSAREENTIRELYRESTRICTEDBYMECHANICALBEARINGSTHECOMBINEDUSEOFACTIVEMAGNETICBEARINGSANDMECHANICALBEARINGSCANCUTDOWNTHECOMPLEXITYOFCONTROLANDMAKETHESYSTEMMORESTABLE,VIABLEANDCOSTEFFECTIVECURRENTLY,AXIALFLUXPERMANENTMAGNETMOTORSAFPMUSEDINMANYAPPLICATIONSHAVEBECOMEANAPPEALINGRESEARCHFIELD89THEYHAVESEVERALUNIQUEFEATURESSUCHASHIGHEFFICIENCY,HIGHPOWERANDTORQUEDENSITIES,LOWROTORLOSSESANDSMALLMAGNETICTHICKNESSHOWEVER,THEDISADVANTAGEISTHATTHEDISTRIBUTEDWINDINGSHAVEENDWINDINGSOFSIGNIFICANTLENGTHCOMPAREDTOTHEACTIVEPARTOFTHECOILCONDUCTORSTHISFEMANALYSESFORTHEDESIGNANDMODELINGOFANOVELFLYWHEELENERGYSTORAGESYSTEMASSISTEDBYINTEGRATEDMAGNETICBEARINGCZHANG,STUDENTMEMBER,IEEE,PWU,STUDENTMEMBER,IEEEANDKJTSENG,SENIORMEMBER,IEEECENTREFORADVANCEDPOWERELECTRONICS,NANYANGTECHNOLOGICALUNIVERSITYBLKS2,NANYANGAVENUE,SINGAPORE639798,REPUBLICOFSINGAPOREIFIG1THREEMOTIONDIRECTIONSOFFLYWHEEL0780389875/05/20002005IEEE1157OBVIOUSLYRESULTSINPOORMACHINEPERFORMANCE,ASASIGNIFICANTPARTOFTHEMACHINECOPPERIE,MORETHAN50OFTHETOTALINMOSTMACHINEDESIGNSISPRODUCINGHEATBUTNOTORQUE10CONCENTRATEDWINDINGSCANSOLVETHISPROBLEMFURTHERMORE,THEYHAVESIMPLERDESIGN,EASIERARRANGEMENTANDHIGHEREFFICIENCYTHEFINITEELEMENTMETHODFEMHASPROVEDTOBEPARTICULARLYFLEXIBLE,RELIABLEANDEFFECTIVEINTHEANALYSISANDSYNTHESISOFPOWERFREQUENCYELECTROMAGNETICANDELECTROMECHANICALDEVICES1112THEFEMCANANALYZEPMCIRCUITSOFANYSHAPEANDMATERIALAREMARKABLEADVANTAGEOFFEMANALYSISOVEROTHERAPPROACHESTOANALYSISOFPMMOTORISTHEINHERENTABILITYTOCALCULATEACCURATELYARMATUREREACTIONEFFECTS,ELECTROMAGNETICFORCEANDTORQUEINTHISPAPER,ANOVELFLYWHEELENERGYSTORAGESYSTEMASSISTEDBYINTEGRATEDMAGNETICBEARINGISPROPOSEDTHEMOTORANDGENERATORARECOMBINEDTOBEASINGLEMACHINEANDTHEFLYWHEELFUNCTIONSASTHEROTORINORDERTOSAVESPACEMECHANICALBEARINGSAREUSEDTORESTRICTTHEDISPLACEMENTANDROTATIONALONGRADIALDIRECTIONS,ANDTHEDISPLACEMENTANDROTATIONALONGAXIALDIRECTIONARECONTROLLEDBYACTIVEMAGNETICBEARINGSTHESTRUCTUREANDELECTROMAGNETICDESIGNOFTHEPROPOSEDSYSTEMISPRESENTEDALONGWITHTHEMATHEMATICALMODEL3DFEMANALYSESAREIMPLEMENTEDTOVERIFYTHEMATHEMATICALMODELANDSUPPORTTHEFEASIBILITYOFTHESYSTEMANALYSISRESULTSHAVEBEENOBTAINEDANDAREPRESENTEDINTHISPAPERIICONSTRUCTIONANDGEOMETRYOFTHEPROPOSEDSYSTEMACONFIGURATIONOFTHEENTIRESYSTEMFIG2SHOWSTHECROSSSECTIONALDIAGRAMOFTHEPROPOSEDFLYWHEELENERGYSTORAGESYSTEMITSCOMPONENTSARELISTEDINTABLEIITEMS1AND8ARETHEUPPERANDLOWERSTATORSFIXEDONTHESYSTEMHOUSINGWHICHISDESIGNEDTODISSIPATERADIALKINETICENERGYFROMANYROTORDEBRISANDENSURESAFETYINTHEEVENTOFMECHANICALFAILUREAXIALFLUXPERMANENTMAGNETSYNCHRONOUSMOTORISIMPLEMENTEDTODRIVETHEFLYWHEELWHICHISALSOFUNCTIONINGASAROTORMECHANICALROTATIONALBALLBEARINGSAREMOUNTEDONTHEOUTERRIMOFTHEROTORTOCONSTRAINITSRADIALMOTIONANDASSISTTHEROTATIONOFTHEFLYWHEEL/ROTORTHISARRANGEMENTMAKESTHESTRUCTUREVERYCOMPACTWITHOUTUSINGTHESHAFTBUTTHELARGEDIAMETEROFTHEBOREOFTHEMECHANICALBEARINGLIMITSTHEMAXIMUMSPEEDBYUSINGFLUIDFILMBEARINGS,THEDNVALUEBOREDIAMETERMMSPEEDRPMCANREACH3,000,00013THATMEANSTHEMAXIMUMSPEEDISLESSTHAN20,000RPMWHENTHEBOREDIAMETERIS150MMINHIGHERSPEEDFLYWHEELSYSTEM,TWOMECHANICALBEARINGSCANBEMOUNTEDATTHEENDSOFTHESHAFTWHICHISFIXEDINTHEMIDDLEOFTHEROTORWITHTHISARRANGEMENT,THESPEEDMAYREACHUPTO60,000RPMANDABOVETHEAXIALMOTIONCANBEREALIZEDWITHTHEAIDOF4SLIDINGBALLBEARINGSINSTALLEDORTHOGONALLYONTHERIMOFTHEROTATIONALBALLBEARINGNONCONTACTEDDYCURRENTDISPLACEMENTSENSORANDPHOTOELECTRICALSENSORARESETINTHEHOLLOWCENTEROFTHETWOSTATORSTODETECTTHEDISPLACEMENTANDANGULARPOSITIONALONGZAXISWHENTHEROTORSPINS,ITEMS2AND10INFIG2TOUCHDOWNBEARINGSARENECESSARYDURINGSTARTINGOPERATIONORINTHEEVENTOFMAGNETICBEARINGSFAILURETHETOUCHDOWNBEARINGSSHALLBEMOUNTEDAGAINSTTHEOUTERRIMOFTHEROTORDURINGNORMALOPERATION,THEREISALESSTHAN05MMAIRGAPBETWEENALLROTORSURFACESANDTHETOUCHDOWNBEARINGS,THUSACHIEVINGAMECHANICALLYCONTACTLESSENVIRONMENTBBASICFEATURESOFTHEPROPOSEDSYSTEMFIG3SHOWSTHEBASICFEATURESOFTHEPROPOSEDSYSTEMTHEMOTORANDGENERATORWITHDISKTYPEGEOMETRYARECOMBINEDINTOASINGLEELECTRICMACHINEASSHOWNINFIG3ATHEROTORDOUBLESASTHEFLYWHEELANDISSANDWICHEDBETWEENTWODISKTYPESTATORSTHISDESIGNMAXIMIZESTHETORQUEPRODUCTIONAREAOFTHEDISKTYPEROTORASSHOWNINFIG3B,EACHOFTHEUPPERANDLOWERSTATORSCARRIESASETOFTHREEPHASECOPPERWINDINGSTOBEFEDWITHSINUSOIDALCURRENTSCONCENTRATEDWINDINGSAREIMPLEMENTEDTOREDUCETHEPOWERLOSSIFDISTRIBUTEDWINDINGSAREUSED,THEWINDINGENDSWILLSPANHALFTHECIRCUMFERENCEOFTHEROTORTHEENDSAREMUCHLONGERCOMPAREDTOTHEEFFECTIVEPARTSOFCOILCONDUCTORS,ANDTHECOPPERLOSSOFTHEWINDINGSWILLTHUSBELARGERINTHISPARTICULARDESIGN,THEREARE6COILS,EACHOFWHICHSURROUNDSASTATORTOOTHTHEDISTRIBUTIONOFTHREEPHASESANDDIRECTIONSOFTHETHREEPHASECURRENTSATAPARTICULARINSTANCEARETABLEICOMPONENTSOFTHEPROPOSEDSYSTEMITEMNUMBERITEMNAME1UPPERSTATOR2POSITIONSENSOR3STATORWINDINGS4TOUCHDOWNBEARINGS5ROTATIONALBALLBEARING6SYSTEMHOUSING7ROTORPERMANENTMAGNETS8LOWERSTATOR9NONMAGNETICMATERIALGUARDRING10ROTATIONSENSOR11FLYWHEELROTOR12FASTENERS13SLIDINGBALLBEARINGFIG2CROSSSECTIONALDIAGRAMOFTHEPROPOSEDSYSTEM1158SHOWNINFIG4BESIDESIMPROVEDEFFICIENCY,SIMPLESTRUCTUREANDEASYINSTALLATIONOFTHESTATORWINDINGCANALSOBEREALIZEDINTHISDESIGNPERMANENTMAGNETSAREMOUNTEDONBOTHSURFACESOFTHEROTOR,ASSHOWNINFIG3CTHEARRANGEMENTOFTHESEPMSANDTHEMAGNETICFLUXFLOWINGINTHEMOTORAREDEPICTEDINFIG4PMSARESETTLEDINOPPOSITEDIRECTIONSINUPPERANDLOWERROTORFACES,SOTHATTHEYWOULDATTRACTEACHOTHERANDINCREASETHETOTALFLUXINTHEMAGNETICCIRCUITSAGUARDRINGMADEOFHIGHSTRENGTHNONMAGNETICMATERIALISUSEDTOASSISTTHEPMSINRESISTINGTHECENTRIFUGALFORCE,ASSHOWNINFIG3DMAGNETICBEARINGSCANBEREALIZEDBYUSINGATTRACTIVEFORCESTHEINTERACTIONBETWEENTHESTATORANDROTORFIELDSPRODUCESANAXIALFORCETHATMAKESTHEROTORANDSTATORATTRACTEACHOTHERTHECURRENTSOFEACHSTATORCANBEINDEPENDENTLYADJUSTEDTOCONTROLTHENETFORCESONTHEROTORANDKEEPITINTHEMIDDLEOFTHETWOSTATORSTHENETFORCEALONGTHEAXIALAXISCANBEOBTAINEDAS21FFF1WHERE1FISTHEFORCEBETWEENTHELOWERSTATORANDROTOR2FISTHEFORCEBETWEENTHEUPPERSTATORANDROTORTHEMOTORGENERATORISEQUIVALENTTOTWOMOTORS,THETOTALTORQUETCANBEWRITTENAS12TTT2WHERE1TAND2TARETORQUESGENERATEDBYTHEUPPERANDLOWERMOTORRESPECTIVELYCDIMENSIONSOFTHEMOTORTHESIZEOFAXIALFLUXMOTORCANBETRANSFORMEDTOTHATOFANEQUIVALENTSIZEDRADIALMACHINEBYTHEFOLLOWINGFORMULAS2OIDDD32OIDDL4WHEREODANDIDARETHEOUTERANDINNERDIAMETERSOFTHEAXIALFLUXDISKTYPEMOTOR,DANDLARETHEINNERDIAMETERANDLENGTHOFTHEEQUIVALENTRADIALMACHINEMAXIMUMTORQUEISPRODUCEDWHEN/3ROIKDDFROMOUTPUTEQUATIONOFTHEMOTOR,WECANGET20SQDLCN5ANDTHEN,WECANOBTAIN3320811RORRSQKDKKCN6WHERE0CISTHEOUTPUTCOEFFICIENT,QISTHERATINGOFMACHINEINKVA,SNISTHERATEDSPEEDINRPS301110GAVWCBAK,COSENNNKPQ7WHEREGAVBREPRESENTSTHEAVERAGEFLUXDENSITYOVERTHEAIRGAPOFTHEMACHINE,ALSOKNOWNASMAGNETICLOADINGAISTHEELECTRICLOADINGWKISTHEWINDINGFACTORNP,NANDCOSNREPRESENTRATEDPOWER,EFFICIENCYANDPOWERFACTORRESPECTIVELYEKISTHERATIOBETWEENINDUCEDEMFANDTHEVOLTAGEINTHISDESIGN,0905EKMINIMUMLENGTHOFAIRGAPISSETBYMECHANICALCONSTRAINTSANDISUNLIKELYTOBELESSTHAN03MMMAGNETSDEPTHSHOULDGENERALLYBEREDUCEDTOAMINIMALVALUESOASTOMINIMIZETHECOSTOFTHEMAGNETSMANUFACTURINGRESTRICTIONSMAKEITDIFFICULTTOHAVEMAGNETSTHINNERTHAN20MMINTHISDESIGN,GLISSELECTEDAS05MM,ANDMLISSETTOBE25MMACCORDINGTOTHEDESIGNREQUIREMENTDATASHOWNINTABLEII,THEMOTORDESIGNRESULTSCANBEOBTAINEDASINTABLEIIITHISISJUSTATESTDESIGNTOVERIFYTHEFEASIBILITYOFTHESYSTEMSTRUCTUREANDTHECORRECTNESSOFTHEMATHEMATICALMODELSOTHERATEDFIG4MOTORDEVELOPMENTSTRUCTUREAND2DFLUXPATTERNABCDFIG3BASICPARTSOFTHEPROPOSEDFLYWHEELSYSTEMASTATORROTORASSEMBLYBSTATORWINDINGSCROTORFLYWHEELDNONMAGNETICGUARDRING1159SPEEDISONLYSELECTEDTOBE1500RPMIIIMATHEMATICALMODELASSHOWNINFIG3,THETHREEPHASEWINDINGSOFTHESTATORAREDENOTEDASA,BANDCWITHTHESAMEWINDINGNUMBERPERMANENTMAGNETSAREMOUNTEDONTHESURFACEOFTHEDISKTYPEROTOR,ANONSALIENTROTORISOBTAINEDASARESULTTHEMOTORCANBETREATEDASACONVENTIONALSYNCHRONOUSMOTOR,ONLYIFTHEFIELDWINDINGSAREREPLACEDBYPERMANENTMAGNETSTHEPMMOTORCANBEREADILYANALYZEDBYASSUMINGTHATTHEPERMANENTMAGNETSOFTHEROTORHEREHAVEBEENREPLACEDBYANEQUIVALENTROTORCURRENTFIWITHTHEWINDINGNUMBERFNTHEWAVEFORMOFTHEMMFSPRODUCEDBYTHESTATORPHASEWINDINGSANDTHEEQUIVALENTROTORCURRENTFIMAYBECONSIDEREDASCOARSEAPPROXIMATIONOFSINUSOIDALFUNCTIONSOFSANDR,THESAMEASTHEDISTRIBUTIONOFTHEWINDINGS1415WHERESANDRARETHEANGLESMEASUREDFROMTHEAPHASESTATORWINDINGAXISANDROTATIONALDAXIS,RESPECTIVELYASSUMINGTHENUMBEROFPOLEPAIRSISP,THEIRFUNCTIONSAREASFOLLOWSCOS2SIN2SASASSSASSMMFNIPPNNP82COS322SIN32SBSBSSSBSSMMFNIPPNNP92COS322SIN32SCSCSSSASSMMFNIPPNNP10COS2SIN2FFFRFRFRMMFNIPPNNP11WHERESNISTHENUMBEROFTURNSOFEQUIVALENTSINUSOIDALLYDISTRIBUTEDWINDINGINEACHPHASEOFTHESTATORFORTHEWINDINGDISTRIBUTIONDEPICTEDASFIG3B,THEPITCHFACTOR1PK,THEDISTRIBUTIONFACTORDKCOS/63/2,SOTHEWINDINGFACTOR3/2WPDKKKTHENSNCANBECALCULATEDAS4SWPHNKN12WHEREPHNISTHEACTUALNUMBEROFTURNSINSERIESPERPHASETHEMAXIMUMVALUEOFTHEEQUIVALENTMMFPRODUCEDBYPMS,MMMF,ISCALCULATEDTOBE2FFMMMNIMMFHLP13WHERE,MLANDMHDENOTETHEMAGNETLENGTHANDTHEMAGNETICFIELDINTENSITYWHENTHEMAGNETISSHORTEDBYPERMEABLEIRONTHENTHEVALUEOFFFNICANBEACHIEVEDAS022RMFFMMRBLNIPHLP14RBISTHEREMANENTFLUXDENSITYFORTHEPMS,RISTHERELATIVEPERMEABILITY,AND0ISTHEMAGNETICPERMEABILITYOFTHEAIRWITHTHEVALUE7410THEEFFECTIVEAIRGAPLENGTHBETWEENTHESURFACESOFSTATORANDROTORISDEFINEDASG,THEMAGNETICFLUXDENSITYBANDMAGNETICFLUXARESHOWNASBELOW0SMMFBBDSG15ASANEXAMPLE,LETUSDETERMINETHETOTALFLUXLINKAGESOFTHEWINDINGDUETOCURRENTFLOWINGONLYINAWINDING,LEAKAGEINDUCTANCESAREIGNOREDHERE/022/0SIN2COS4SSPSASASSASSSSPSOIASSNNDPPNRRIPDDPG16222028ASOISASSASRRNLLIPG17WHEREORANDIRARETHEOUTERANDINNERRADIUSOFTHESTATORSIMILARLY,WECANGETASBSCSSLLLL18TABLEIIIDESIGNGEOMETRICALDATANOOFPOLEPAIRS2NOOFSLOTS6OUTERDIAMETEROFSTATOR130MMINNERDIAMETEROFSTATOR76MMPERMANENTMAGNETSLENGTH25MMAIRGAPLENGTH05MMSLOTWIDTH28MMSLOTDEPTH22MMSTATORYOKETHICKNESS18MMROTORCORETHICKNESS60MMAIRGAPFLUXDENSITY0805TNOOFTURNSPERPHASE416TABLEIIDESIGNREQUIREMENTDATARATEDPOWER1KVAPHASECURRENT,RMS185APOWERFACTOR09EFFICIENCY09RATEDSPEED1500RPMFREQUENCY50HZSLOTFILLFACTOR04REMANENTFLUXDENSITY123TMAGNETRECOILPERMEABILITY105CARTERSFACTOR1051160222028FOIFFFFASRRNLLIPG19THEMUTUALINDUCTANCEBETWEENTHEAANDFWINDINGSISDETERMINEDBY/022/0SIN2COS4SSPSASFASSFRSSPFOIFSNNDPPNRRIPDDPG20INTHESAMEWAYASABOVE,AFL,BFL,CFLCANBEWRITTENAS2202COSCOS8OISFAFMRRNNLPLPPG212202COS2/38OISFBFRRNNLPPG222202COS2/38OISFCFRRNNPG23THEREFORE,THEOTHERMUTUALINDUCTANCESCANBEOBTAINEDAS1/2ABBAACCABCCBSLLLLLLL24THEN,FFAFBFCFFTAFASABACAFABCBFBSACBBACBCSCCFCALLLLILLLLILLLILLLILLLI25WHERELISTHEINDUCTANCEMATRIXOFTHEMOTOR,THEINDUCTANCESAREDETERMINEDBY1819AND2124THEINDUCTANCEEXPRESSIONOF31CANBESIMPLIFIEDWHENTHEYAREEXPRESSEDINTERMSOF0DQVARIABLES3/203/20003/2FFMFDMSDSQQLLILLI26THEMAGNETICENERGYSTOREDMAYBECALCULATEDAS1I2TFDQFDQWII27THEATTRACTIVEFORCESFCANTHUSBEOBTAINED2202222222165322OISFFSFFDSDQRRWFGPGNINNIINII28FROMTHEFLEMINGSLEFTHANDRULE,THEROTATINGTORQUESTCANBEEXPRESSEDAS22033216OISFSDQQDFQRRNNTPIIIPG29HERE,THEAIRGAPBETWEENTHESURFACESOFTHESTATORANDPMSATTHEEQUILIBRIUMPOINTISDEFINEDASGL,SOTHEEFFECTIVEAIRGAPBETWEENTHESTATORANDROTORATTHEEQUILIBRIUMPOINTCANBEOBTAINEDAS0/CGMRGKLL30WHERECKISTHECARTERSCOEFFICIENT,WHICHISAPPROXIMATELYEQUALTO1THEN1FAND1TCANBECALCULATEDBYSUBSTITUTING0GGZ,1DDIIAND1QQIIINTO2829WHEREAS2FAND2TCANBECALCULATEDBYSUBSTITUTING0GGZ,2DDIIAND2QQIIINTOTHESAMEEQUATIONS,WHEREZISTHEDISPLACEMENTOFTHEROTORINTHEVERTICALDIRECTIONTHETOTALFORCEANDTORQUEAREOBTAINEDBY1AND2THERADIALMOTIONSOFTHEROTORARERESTRICTEDBYMECHANICALBALLBEARINGSTHEREFORE,THEAXIALMOTIONOFTHEROTORISINDEPENDENTOFRADIALMOTIONTHEDYNAMICEQUATIONOFTHEAXIALMOTIONOFTHEROTORISZMZFF31WHEREZFISTHEEXTERNALFORCEINTHEDIRECTIONOFZAXIS,ANDTHEGRAVITYISTAKENINTOCONSIDERATIONTHEEQUATIONOFTOTALTORQUECANBEREWRITTENASTQTJKI32AND,TQJKI33WHEREJISTHEMOMENTOFINERTIA,ISTHEROTORANGLEANDISTHEROTATIONALSPEEDTHEVOLTAGEEQUATIONSCANBEWRITTENAS1QADDDRQDDDLRDIVIPIDTLLL341ADMQQDRDRQQQQRLDIVIPIPDTLLLL35IVFEMANALYSISANDMODELVERIFICATIONATHEORYMAGNETICFIELDSINPMMOTORSAREALWAYSASSOCIATEDWITHTRANSIENTEXCITATIONSANDNONLINEARMAGNETICMATERIALSTHEFOLLOWINGTHREEMAXWELLEQUATIONSARERELEVANTTOTRANSIENTAPPLICATIONSHJEGGG36/EBTGG370BG38WHEREHGDENOTESTHEMAGNETICFIELDDENSITY,JGISTHEELECTRICCURRENTDENSITY,ISTHECONDUCTIVITYOFTHEDIELECTRIC,ANDEGISTHEELECTRICFIELDINTENSITYFROM36AND37,WECANOBTAIN10BHTGG39THEFORCEANDTORQUECANBECALCULATEDASTHEDERIVATIVEOFTHESTOREDMAGNETICCOENERGYWWITHRESPECTTOASMALLDISPLACEMENTTHECOENERGYCANBEWRITTENAS11610BVWHDBDVGG40THENTHECOMPONENTOFINSTANTANEOUSFORCESFINTHEDIRECTIONOFTHEDISPLACEMENTSISSDWFDS41THEINSTANTANEOUSTORQUETWITHASMALLANGULARROTATIONDISPLACEMENTISREPRESENTEDBY,/ICONSTWIT42BFEMANALYSISTHEPROPOSEDSYSTEMDESCRIBEDINSECTIONIIWASANALYZEDUSINGATIMESTEPPINGTHREEDIMENSIONALFINITEELEMENTSIMULATOR16THEMESHSHAPEOFANALYSISMODELISSHOWNASFIG5ONLYONESTATORANDROTORAREIMPLEMENTEDINFEMANALYSISINORDERTOSAVECOMPUTATIONALTIME,YETITISEFFECTIVETODESCRIBETHEPERFORMANCESOFTHEENTIRESYSTEMWHENTHESTATORISFEDWITH50HZSINUSOIDALCURRENTUNDEROPENLOOPCONDITION,ANDGIVENANINITIALSPEEDOF1500RPM,BOTHTHEFLUXLINKAGEANDINDUCEDVOLTAGEAREQUASISINUSOIDAL,ANDTHESPEEDSETTLESTOTHESYNCHRONOUSSPEEDEVENTUALLYFEMANALYSISRESULTSARESHOWNASINFIG6ITPROVESTHATTHEMOTORCANBEANALYZEDASASINEWAVEMOTOR,ANDTHEMATHEMATICALANALYSISISTENABLEFIG7AANDBSHOWTHEMAGNETICFLUXDENSITYINTHESTATORANDROTORITISOBVIOUSTHATTHEREARE4REGIONSHAVINGHIGHERFLUXDENSITYINTHESURFACESOFTHESTATORANDROTORRESPECTIVELYITREPRESENTS4POLESINTHEMOTORPERMANENTMAGNETSNDFE35WITHTHEREMANENTFLUXDENSITY123RBTAREMOUNTEDONTHESURFACEOFTHEROTOR,SOINTHEREGIONUNDERPMS,THEFLUXDENSITYISDEFINITELYHIGHERTHANTHATATOTHERPLACESCVERIFICATIONOFTHEMATHEMATICALMODELTHREEPHASECURRENTSCANBEDECOUPLEDINTODQCURRENTS,ASSHOWNBELOWCOSSINADQIII43COS120SIN120BDQIII44COS240SIN240CDQIII45WHEREISTHEELECTRICALANGLEOFTHEROTORMAKING0QI,WEOBTAINAVERAGEZEROTORQUEASSHOWNINFIG8AITISEVIDENTTHATTHETORQUEHASNORELATIONSTODIABFIG7MAGNETICFLUXDISTRIBUTIONOFTHESTATORANDROTORAFLUXDENSITYINTHESTATORBFLUXDENSITYINTHEROTOR00020040060080104020020406TIMESFLUXLINKAGEWBFLUXLINKAGEVSTIME00020040060080120015010050050100150200TIMESINDUCEDVOLTAGEVINDUCEDVOLTAGEVSTIMEAB051015202514001450150015501600TIMESSPEEDRPMSPEEDVSTIMECFIG6FEMSIMULATIONRESULTSWHENSTATORFEDWITH50HZSINUSOIDALCURRENTAFLUXLINKAGEBINDUCEDVOLTAGECROTATIONALSPEEDFIG5MESHSHAPEOFANALYSISMODEL1162SIMILARLY,ASSIGNING0DIAND1QI,THEFORCE,TORQUEANDSPEEDCANALSOBEOBTAINEDASSHOWNINFIG8BDTHEFORCEANDTORQUEAREAPPROXIMATELYCONSTANT,ANDTHESPEEDINCREASESLINEARLYITPROVESTHATTHETORQUEISPROPORTIONALTOQIINTHISWAY,BYASSIGNINGQIORDITOZERO,ANDTHENCHANGINGTHEVALUESOFDIORQIACCORDINGLY,WECANGETTHECURVESOFAXIALMAGNETICFORCEANDTORQUEATTHESTARTINGPOINT,ASSHOWNINFIG9SOLIDLINESREPRESENTTHECALCULATIONRESULTSFROM28AND29,ANDTHESTARMARKSARETHEFEMANALYSISRESULTSWHENITISASSIGNEDWITHDI

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论