




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,4.3高阶微分方程的降阶和幂级数解法,.,一、可降阶的一些方程类型,n阶微分方程的一般形式:,1 不显含未知函数x,或更一般不显含未知函数及其直到k-1(k1)阶导数的方程是,解得,积分,即,.,解题步骤:,第一步:,第二步:,求以上方程的通解,即,第三步:,对上式求k次积分,即得原方程的通解,.,解,令,则方程化为,这是一阶方程,其通解为,即有,对上式积分4次, 得原方程的通解为,例1,.,2 不显含自变量t的方程,一般形式:,因为,.,用数学归纳法易得:,将这些表达式代入(4.59)可得:,即有新方程,它比原方程降低一阶,.,解题步骤:,第一步:,第二步:,求以上方程的通解,第三步:,解方程,即得原方程的通解,.,解,令,则方程化为,从而可得,及,这两方程的全部解是,例2,再代回原来变量得到,所以得原方程的通解为,.,3 已知齐线性方程的非零特解,进行降阶,的非零解,令,则,代入(4.69)得,即,.,引入新的未知函数,方程变为,是一阶线性方程,解之得,因而,则,.,因此 (4.69)的通解为,.,解题步骤:,第一步:,第二步:,解之得,即,.,第三步:,第四步:,(4.69)的通解为,注,一般求(4.69)的解直接用公式(4.70),.,解,这里,由(4.70)得,例3,.,.,代入(4.2)得,.,事实上,.,若,则,即,因此,对(4.67)仿以上做法,.,.,二、二阶线性方程的幂级数解法,对二阶变系数齐线性方程,其求解问题,归结为寻求它的一个非零解.,下面考虑该方程及初始条件,用级数表示解?,.,定理10,.,定理11,.,例4,解,设级数,为方程的解,由初始条件得:,因而,将它代入方程,合并同类项,并令各项系数等于零,得,.,即,因而,也即,.,故方程的解为,.,例5,解,将方程改写为,易见,它满足定理11条件,且,.,将(4.75)代入(4.74)中,得,.,由(4.76)得,即,.,从而可得,.,因此(4.77)变为,.,若取,则可得(4.74)的另一个特解,由达朗贝尔判别法,对任x值(4.77),(4.78)收敛.,.,因而(4.74)的通解为,因此,不能象上面一样求得通解;,因此,(4.74)的通解为,.,例6,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国无线搜索行业发展趋势与前景展望战略研究报告
- 2025-2030年中国无人驾驶清扫车行业市场发展现状及发展趋势与投资前景研究报告
- 2025-2030年中国旅行型急救箱行业市场现状供需分析及投资评估规划分析研究报告
- 2025年执业医师考试新规解析试题及答案
- 2025-2030年中国排插行业发展分析及投资风险预测研究报告
- 2025-2030年中国指纹打卡机行业市场现状供需分析及投资评估规划分析研究报告
- 行政法学案例分析心得试题与答案
- 北京2025北京市怀柔区卫生健康委员会所属事业单位第二批招聘额度管理人员笔试历年参考题库附带答案详解
- 2025年执业医师考试经验交流及试题及答案
- 美食招商转让协议书
- 热爱生活主题班会
- DB31T 1487-2024 国际医疗服务规范
- 四川省达州市渠县2023-2024学年八年级下学期期末生物学试题(解析版)
- (高清版)AQ 1079-2009 瓦斯管道输送自动喷粉抑爆装置通 用技术条件
- 2024年广东省深圳市中考地理试卷(含答案)
- 贵州老年大学聘任教师登记表
- 第四单元《学习演讲词》整体设计 说课 课件- 2023-2024学年统编版语文八年级下册
- 遵守银行业监管规定承诺书
- 长沙市教育局所属事业单位招聘教职工笔试真题2021
- 中国古建筑文化与鉴赏智慧树知到期末考试答案章节答案2024年清华大学
- 2024版《隐患排查标准手册》(附检查依据)
评论
0/150
提交评论