




文档简介
INTJADVMANUFTECHNOL2001172973042001SPRINGERVERLAGLONDONLIMITEDOPTIMUMGATEDESIGNOFFREEFORMINJECTIONMOULDUSINGTHEABDUCTIVENETWORKJCLINDEPARTMENTOFMECHANICALDESIGNENGINEERING,NATIONALHUWEIINSTITUTEOFTECHNOLOGY,YUNLIN,TAIWANTHISSTUDYUSESTHEINJECTIONPOSITIONANDSIZEOFTHEGATEASTHEMAJORCONTROLPARAMETERSFORASIMULATEDINJECTIONMOULDONCETHEINJECTIONPARAMETERSGATESIZEANDGATEPOSITIONAREGIVEN,THEPRODUCTPERFORMANCEDEFORMATIONCANBEACCURATELYPREDICTEDBYTHEABDUCTIVENETWORKDEVELOPEDTOAVOIDTHENUMEROUSINFLUENCINGFACTORS,FIRSTTHEPARTLINEOFTHEPARAMETEREQUATIONISCREATEDBYANABDUCTIVENETWORKTOLIMITTHERANGEOFTHEGATETHEOPTIMALINJECTIONPARAMETERSCANBESEARCHEDFORBYASIMULATIONANNEALINGSAOPTIMISATIONALGORITHM,WITHAPERFORMANCEINDEX,TOOBTAINAPERFECTPARTTHEMAJORPURPOSEISSEARCHINGFORTHEOPTIMALGATELOCATIONONTHEPARTSURFACE,ANDMINIMISINGTHEAIRTRAPANDDEFORMATIONAFTERPARTFORMATIONTHISSTUDYALSOUSESAPRACTICALEXAMPLEWHICHHASBEENANDPROVEDBYEXPERIMENTTOACHIEVEASATISFACTORYRESULTKEYWORDSABDUCTIVENETWORKINJECTIONMOULDSIMULATIONANNEALINGSA1INTRODUCTIONOWINGTOTHERAPIDDEVELOPMENTOFINDUSTRYANDCOMMERCEINRECENTYEARS,THEREISANEEDFORRAPIDANDHIGHVOLUMEPRODUCTIONOFGOODSTHEPRODUCTSAREMANUFACTUREDUSINGMOULDSINORDERTOSAVETHETIMEANDCOSTPLASTICPRODUCTSARETHEMAJORITYOWINGTOTHESEPRODUCTSNOTREQUIRINGCOMPLICATEDPROCESSESITISPOSSIBLETOCOPEWITHMARKETDEMANDSPEEDILYANDCONVENIENTLYINTRADITIONALPLASTICPRODUCTION,THEDESIGNSOFTHEPORTIONSOFTHEMOULDAREDETERMINEDBYHUMANSHOWEVER,BECAUSEOFTHEINCREASEDPERFORMANCEREQUIREMENTS,THECOMPLEXITYOFPLASTICPRODUCTSHASINCREASEDFIRST,THEGEOMETRICSHAPESOFTHEPLASTICPRODUCTSAREDIFFICULTTODRAW,ANDTHEINTERNALSHAPEISOFTENCOMPLEXWHICHALSOAFFECTSTHEPRODUCTIONOFTHEPRODUCTINJECTIONPROCESSINGCANBEDIVIDEDINTOTHREESTAGESCORRESPONDENCEANDOFFPRINTREQUESTSTODRJCLIN,DEPARTMENTOFMECHANICALDESIGNENGINEERING,NATIONALHUWEIINSTITUTEOFTECHNOLOGY,YUNLIN632,TAIWANEMAILLINRCKSUNWSNHITEDUTW1HEATTHEPLASTICMATERIALTOAMOLTENSTATETHEN,BYHIGHPRESSURE,FORCETHEMATERIALTOTHERUNNER,ANDTHENINTOTHEMOULDCAVITY2WHENTHEFILLINGOFTHEMOULDCAVITYISCOMPLETED,MOREMOLTENPLASTICSHOULDBEDELIVEREDINTOTHECAVITYATHIGHPRESSURETOCOMPENSATEFORTHESHRINKAGEOFTHEPLASTICTHISENSURESCOMPLETEFILLINGOFTHEMOULDCAVITY3TAKEOUTTHEPRODUCTAFTERCOOLINGTHOUGHTHEFILLINGPROCESSISONLYASMALLPROPORTIONOFTHECOMPLETEFORMATIONCYCLE,ITISVERYIMPORTANTIFFILLINGININCOMPLETE,THEREISNOPRESSUREHOLDINGANDCOOLINGISREQUIREDTHUS,THEFLOWOFTHEPLASTICFLUIDSHOULDBECONTROLLEDTHOROUGHLYTOENSURETHEQUALITYOFTHEPRODUCTTHEISOTHERMALFILLINGMODELOFANEWTONIANFLUIDISTHESIMPLESTINJECTIONMOULDFLOWFILLINGMODELRICHARDSON1PRODUCEDACOMPLETEANDDETAILEDCONCEPTTHEMAJORCONCEPTISBASEDONTHEAPPLICATIONOFLUBRICATIONTHEORY,ANDHESIMPLIFIEDTHECOMPLEX3DFLOWTHEORYTO2DHELESHAWFLOWTHEHELESHAWFLOWWASUSEDTOSIMULATETHEPOTENTIALFLOWANDWASFURTHERMOREUSEDINTHEPLASTICITYFLOWOFTHEPLASTICHEASSUMEDTHEPLASTICITYFLOWONANEXTREMELYTHINPLATEANDFULLYDEVELOPEDTHEFLOWBYIGNORINGTHESPEEDCHANGETHROUGHTHETHICKNESSKAMALETALUSEDSIMILARMETHODSTOOBTAINTHEFILLINGCONDITIONFORARECTANGULARMOULDCAVITY,ANDTHEANALYTICALRESULTOBTAINEDWASALMOSTIDENTICALTOTHEEXPERIMENTALRESULTPLASTICMATERIALFOLLOWSTHENEWTONIANFLUIDMODELFORFLOWINAMOULDCAVITY,ANDBIRDETAL24DERIVEDMOULDFLOWTHEORYBASEDONTHISWHENTHESHAPEOFAMOULDISCOMPLICATEDANDTHEREISVARIATIONINTHICKNESS,THENTHEEQUILIBRIUMEQUATIONSCHANGESTONONLINEARANDHASNOANALYTICALSOLUTIONTHUS,ITCANBESOLVEDONLYBYFINITEDIFFERENCEORNUMERICALSOLUTIONS2,5OFCOURSE,ASTHEPOLYMERISAVISCOELASTICFLUID,ITISBESTTOSOLVETHEFLOWPROBLEMBYUSINGVISCOELASTICITYEQUATIONSIN1998,GOYALETALUSEDTHEWHITEMETZNERVISCOELASTICITYMODELTOSIMULATETHEDISKMOULDFLOWMODELFORCENTRALPOURINGMETZNER,USINGAFINITEDIFFERENCEMETHODTOSOLVETHEGOVERNINGEQUATION,FOULDTHEVISCOELASTICITYEFFECTWOULDNOTCHANGETHEDISTRIBUTIONOFSPEEDANDTEMPERATUREHOWEVER,ITAFFECTSTHESTRESSFIELDVERYMUCHIFITISAPUREVISCOELASTIC298JCLINFLOWMODEL,THEPOPULARGNFMODELISGENERALLYUSEDTOPERFORMNUMERICALSIMULATIONCURRENTLY,FINITEELEMENTMETHODSAREMOSTLYUSEDFORTHESOLUTIONOFMOULDFLOWPROBLEMSOTHERMETHODSAREPUREVISCOELASTICMODELS,SUCHASCFOLWANDMOLDFLOWSOFTWAREWEUSEDTHISMETHODASWELLSOMESOFTWAREEMPLOYSTHEVISCOELASTICWHITEMETZNERMODEL,BUTITISLIMITEDTO2DMOULDFLOWANALYSISSIMPLEMOULDFLOWANALYSISISLIMITEDBYCPUTIMEFORTHECOMPLICATEDMOULDSHAPES,PAPTHANASIONETALUSEDUCMFLUIDFORFILLINGANALYSIS,USINGAFINITEDIFFERENCEMETHODANDBFCCCOORDINATIONSYSTEMAPPLICATIONFORTHESOLUTIONOFTHEMORECOMPLICATEDMOULDSHAPEANDFILLINGPROBLEM,BUTITWASNOTCOMMERCIALISED6MANYFACTORSAFFECTPLASTICMATERIALINJECTIONTHEFILLINGSPEED,INJECTIONPRESSUREANDMOLTENTEMPERATURE,HOLDINGPRESSURE712,COOLINGTUBE13,14ANDINJECTIONGATEAFFECTTHEACCURACYOFTHEPLASTICPRODUCT,BECAUSE,WHENTHEINJECTIONPROCESSINGISCOMPLETED,THEFLOWOFMATERIALINTHEMOULDCAVITYRESULTSINUNEVENTEMPERATUREANDPRESSURE,ANDINDUCESRESIDUALSTRESSANDDEFORMATIONOFTHEWORKPIECEAFTERCOOLINGITISDIFFICULTTODECIDEONTHEMOULDPARTSURFACEANDGATEPOSITIONSGENERALLY,THEMOULDPARTSURFACEISLOCATEDATTHEWIDESTPLANEOFTHEMOULDSEARCHINGFORTHEOPTIMALGATEPOSITIONDEPENDSONEXPERIENCEMINIMALMODIFICATIONTOTHEMOULDISREQUIREDIFYOUARELUCKYHOWEVER,THETIMEANDCOSTREQUIREDFORTHEMODIFICATIONOFMOSTINJECTIONMOULDSEXCEEDSTHEORIGINALCOST,IFTHECHOICEOFTHEPARTLINEISPOORFORTHEMOULDPARTSURFACE,MANYWORKERSUSEDVARIOUSMETHODSTOSEARCHFORTHEOPTIMALMOULDPARTLINE,SUCHASGEOMETRICSHAPEANDFEATUREBASEDDESIGN1517SOMEWORKERSUSEDFINITEELEMENTMETHODSANDABDUCTIVENETWORKSTOLOOKFORTHEOPTIMALGATEDESIGNFORADIECASTINGMOULD18THISSTUDYUSEDANABDUCTIVENETWORKTOESTABLISHTHEPARAMETERRELATIONSHIPOFTHEMOULDPARTLINE,ANDUSEDTHISFORMULAFORSEARCHINGFOR22POINTSONTHEINJECTIONMOULDPARTLINETOSERVEASTHELOCATIONFORANINJECTIONGATEABDUCTIVENETWORKSAREUSEDTOMATCHINJECTIONPRESSUREANDPRESSUREHOLDINGTIMETOPERFORMINJECTIONFORMATIONANALYSIS,ANDTOESTABLISHARELATIONSHIPBETWEENTHESEPARAMETERS,ANDTHEOUTPUTRESULTOFTHEINJECTIONPROCESSITHASBEENSHOWNTHATPREDICTIONACCURACYINABDUCTIVENETWORKSISMUCHHIGHERTHANTHATINOTHERNETWORKS19ABDUCTIVENETWORKSBASEDONTHEABDUCTIVEMODELLINGTECHNIQUEAREABLETOREPRESENTCOMPLEXANDUNCERTAINRELATIONSHIPSBETWEENMOULDFLOWANALYSISRESULTSANDINJECTIONPARAMETERSITHASBEEENSHOWNTHATTHEINJECTIONSTRAINANDINJECTIONSTRESSINAPRODUCTCANBEPREDICTED,WITHREASONABLEACCURACY,BASEDONTHEDEVELOPEDNETWORKSTHEABDUCTIVENETWORKHASBEENCONSTRUCTEDONCETHERELATIONSHIPSOFGATELOCATIONTHATAREINPUTANDSIMULATEDHAVEBEENDETERMINEDANAPPROPRIATEOPTIMISATIONALGORITHMWITHAPERFORMANCEINDEXISTHENUSEDTOSEARCHFORTHEOPTIMALLOCATIONPARAMETERSINTHISPAPER,ANOPTIMISATIONMETHODFORSIMULATEDANNEALING20ISPRESENTEDTHESIMULATEDANNEALINGALGORITHMISASIMULATIONOFTHEANNEALINGPROCESSFORMINIMISINGTHEPERFORMANCEINDEXITHASBEENSUCCESSFULLYAPPLIEDTOFILTERINGINIMAGEPROCESSING21,VLSILAYOUTGENERATION22,DISCRETETOLERANCEDESIGN23,WIREELECTRICALDISCHARGEMACHINING24,DEEPDRAWCLEARANCE25,ANDCASTINGDIERUNNERDESIGN26,ETCITPROVIDESANEXPERIMENTALFOUNDATIONBASEDONTHEORYFORTHEDEVELOPMENTANDAPPLICATIONOFTHETECHNOLOGIES2MOULDFLOWTHEORYTHEMOULDFLOWANALYSISINCLUDEFOURMAJORPARTS1FILLINGSTAGE2PRESSUREHOLDINGSTAGE3COOLINGANDSOLIDIFICATIONSTAGE4SHRINKAGEANDWARP,IESTRESSRESIDUESTAGETHUS,THEMAJORMOULDFLOWEQUATIONSAREDIVIDEDINTOFOURGROUPSINTHEFILLINGSTAGE,THEMOULDCAVITYISFILLEDWITHMOLTENPLASTICFLUIDATHIGHPRESSSURETHUS,THEGOVERNINGEQUATIONSINCLUDE1CONTINUITYEQUATIONTHEPLASTICDEFORMATIONORSHAPECHANGEACCOMPANYTHEFLOWDURINGTHEFILLINGPROCESSMASSCONSERVATIONRTV01RPLASTICDENSITYVVECTORVELOCITY2MOMENTUMEQUATIONNEWTONSSECONDLAWISUSEDTODERIVETHEMOMENTUMACCELERATIONCONDITIONORFORCEBALANCEGENERATEDBYPLASTICFLOWRFVTVVGVPTRF2PFLOWPRESSUREFBODYFORCETSTRESSTENSOR3ENERGYEQUATIONTHEENERGYCONSERVATIONOFSYSTEMANDLAWSOFCONSERVATIONOFFLOWMATERIAL,IFTHEFLUIDISINCOMPRESSIBLERCPFTTVTGQTV3TTEMPERATURECPSPECIFICHEATOFCONSTANTPRESSUREQHEATFLUX4RHEOLOGYEQUATIONTFNG,T,P,4GVVT5VDEFORMTENSORVTTRANSPORTVECTORHOLDINGPRESSUREANALYSISTHEHOLDINGPRESSUREPROCESSISTOMAINTAINTHEPRESSUREAFTERTHEMOULDCAVITYISFILLEDINORDERTOINJECTMOREPLASTIC,TOCOMPENSATEFORTHESHRINKAGEINCOOLINGRV1TPX1FT11X1T21X2T31X3G6RV2TPX2FT12X1T22X2T32X3G7RV3TPX1FT13X1T23X2T33X3G8OPTIMUMGATEDESIGNOFFREEFORMINJECTIONMOULD299COOLINGANALYSISTHEANALYSISOFTHECOOLINGPROCESSCONSIDERSTHERELATIONSHIPOFTHEPLASTICFLOWDISTRIBUTIONANDHEATTRANSMISSIONTHEHOMOGENOUSMOULDTEMPERATUREANDTHESEQUENCEOFFILLINGWILLBEAFFECTEDBYTHESHRINKAGEOFTHEPRODUCTFORMEDIFTHETEMPERATUREISDISTRIBUTEDNONUNIFORMLY,ITTENDSTOPRODUCEWARPTHISISMAINLYDUETOHEATTRANSFERANDCRYSTALLISATIONHEATOFTHEPLASTICRCPTTKF2TX212TX222TX33GRCPRDH9RCRYSTALLISATIONRATEDHCRYSTALLISATIONHEAT3ABDUCTIVENETWORKSYNTHESISANDEVALUATIONMILLER22OBSERVEDTHATHUMANBEHAVIOURLIMITSTHEAMOUNTOFINFORMATIONCONSIDEREDATATIMETHEINPUTDATAARESUMMARISEDANDTHENTHESUMMARISEDINFORMATIONISPASSEDTOAHIGHERREASONINGLEVELINANABDUCTIVENETWORK,ACOMPLEXSYSTEMCANBEDECOMPOSEDINTOSMALLER,SIMPLERSUBSYSTEMSGROUPEDINTOSEVERALLAYERSUSINGPOLYNOMIALFUNCTIONNODESTHESENODESEVALUATETHELIMITEDNUMBEROFINPUTSBYAPOLYNOMIALFUNCTIONANDGENERATEANOUTPUTTOSERVEASANINPUTTOSUBSEQUENTNODESOFTHENEXTLAYERTHESEPOLYNOMIALFUNCTIONALNODESARESPECIFIEDASFOLLOWS1NORMALISERANORMALISERTRANSFORMSTHEORIGINALINPUTVARIABLESINTOARELATIVELYCOMMONREGIONA1Q0Q1X110WHEREA1ISTHENORMALISEDINPUT,Q0,Q1ARETHECOEFFICIENTSOFTHENORMALISER,ANDX1ISTHEORIGINALINPUT2WHITENODEAWHITENODECONSISTSOFLINEARWEIGHTEDSUMSOFALLTHEOUTPUTSOFTHEPREVIOUSLAYERB1R0R1Y1R2Y2R3Y3RNYN11WHEREY1,Y2,Y3,YNARETHEINPUTOFTHEPREVIOUSLAYER,B1ISTHEOUTPUTOFTHENODE,ANDTHER0,R1,R2,R3,RNARETHECOEFFICIENTSOFTHETRIPLENODE3SINGLE,DOUBLE,ANDTRIPLENODESTHESENAMESAREBASEDONTHENUMBEROFINPUTVARIABLESTHEALGEBRAICFORMOFEACHOFTHESENODESISSHOWNINTHEFOLLOWINGSINGLEC1S0S1Z1S2Z21S3Z3112DOUBLED1T0T1N1T2N21T3N31T4N2T5N22T6N32T7N1N213TRIPLEE1U0U1O1U2O21U3O31U4O2U5O22U6O32U7O3U8O23U9O33U10O1O2U11O2O3U12O1O3U13O1O2O314WHEREZ1,Z2,Z3,ZN,N1,N2,N3,NN,O1,O2,O3,ONARETHEINPUTOFTHEPREVIOUSLAYER,C1,D1,ANDE1ARETHEOUTPUTOFTHENODE,ANDTHES0,S1,S2,S3,SN,T0,S1,T2,T3,TN,U0,U1,U2,U3,UNARETHECOEFFICIENTSOFTHESINGLE,DOUBLE,ANDTRIPLENODESTHESENODESARETHIRDDEGREEPOLYNOMIALEQANDDOUBLESANDTRIPLESHAVECROSSTERMS,ALLOWINGINTERACTIONAMONGTHENODEINPUTVARIABLES4UNITISERONTHEOTHERHAND,AUNITISERCONVERTSTHEOUTPUTTOAREALOUTPUTF1V0V1I115WHEREI1ISTHEOUTPUTOFTHENETWORK,F1ISTHEREALOUTPUT,ANDV0ANDV1ARETHECOEFFICIENTSOFTHEUNITISER4PARTSURFACEMODELTHISSTUDYUSESANACTUALINDUSTRIALPRODUCTASASAMPLE,FIG1THEMOULDPARTSURFACEISLOCATEDATTHEMAXIMUMPROJECTIONAREAASSHOWNINFIG1,THEBOTTOMISTHEWIDESTPLANEANDISCHOSENASTHEMOULDPARTSURFACEHOWEVER,MOSTIMPORTANTISTHESEARCHINGOFGATEPOSITIONONTHEPARTSURFACETHISSTUDYESTABLISHESTHEPARAMETEREQUATIONBYUSINGANABDUCTIVENEURONNETWORK,INORDERTOESTABLISHTHESIMULATEDANNEALINGMETHODSATOFINDTHEOPTIMALGATEPATHPOSITIONTHEPARAMETEREQUATIONOFAPARTSURFACEISEXPRESSEDBYFYXFIRST,USEACMMSYSTEMTOMEASURETHEXYZCOORDINATEVALUESINTHISSTUDYZ0OF22POINTSONTHEMOULDPARTLINEONTHEMOULDPARTSURFACEASILLUSTRATEDINTABLE1,ANDTHEGATEPOSITIONISCOMPLETELYONTHECURVEINTHISSPACEPRIORTODEVELOPINGASPACECURVEMODEL,ADATABASEHASTOBETRAINED,ANDAGOODRELATIONSHIPMSUTEXISTBETWEENTHECONTROLPOINTANDABDUCTIVENETWORKSYSTEMACORRECTANDFIG1INJECTIONMOULDPRODUCT300JCLINTABLE1X,YCOORDINATESETNUMBERXCOORDINATEYCOORDINATE1002462163433332835452920457310566934097113323581298394913855571014127341113699671212961191310002103149332316158642528167982739177872831187802929197833034207603130217073215226113249PRECISECURVEEQISHELPFULFORFINDINGTHEOPTIMALGATELOCATIONTOBUILDACOMPLETEABDUCTIVENETWORK,THEFIRSTREQUIREMENTISTOTRAINTHEDATABASETHEINFORMATIONGIVENBYTHEINPUTANDOUTPUTPARAMETERSMUSTBESUFFICIENTAPREDICTEDSQUAREERRORPSECRITERIONISTHENUSEDTODETERMINEAUTOMATICALLYANOPTIMALSTRUCTURE23THEPSECRITERIONISUSEDTOSELECTTHELEASTCOMPLEXBUTSTILLACCURATENETWORKTHEPSEISCOMPOSEDOFTWOTERMSPSEFSEKP16WHEREFSEISTHEAVERAGESQUAREERROROFTHENETWORKFORFITTINGTHETRAININGDATAANDKPISTHECOMPLEXPENALTYOFTHENETWORK,SHOWNBYTHEFOLLOWINGEQUATIONKPCPM2S2PKN17WHERECPMISTHECOMPLEXPENALTYMULTIPLIER,KPISACOEFFICIENTOFTHENETWORKNISTHENUMBEROFTRAININGDATATOBEUSEDANDS2PISAPRIORESTIMATEOFTHEMODELERRORVARIANCEBASEDONTHEDEVELOPMENTOFTHEDATABASEANDTHEPREDICTIONOFTHEACCURACYOFTHEPARTSURFACE,ATHREELAYERABDUCTIVENETWORK,WHICHCOMPRISEDDESIGNFACTORSINPUTVARIOUSYCOORDINATEANDOUTPUTFACTORSXCOORDINATEISSYNTHESISEDAUTOMATICALLYITISCAPABLEOFPREDICTINGACCURATELYTHESPACECURVEATANYPOINTUNDERVARIOUSCONTROLPARAMETERSALLPOLYNOMIALEQUATIONSUSEDINTHISNETWORKARELISTEDINAPPENDIXAPSE58103TABLE2COMPARESTHEERRORPREDICTEDBYTHEABDUCTIVEMODELANDCMMMEASUREMENTDATATHEMEASUREMENTDAAISEXCLUDEDFROMTHE22SETSOFCMMMEASUREMENTDATAFORESTABLISHINGTHEMODELTHISSETOFDATAISUSEDTOTESTTHEAPPROPRIATENESSOFTHEMODELESTABLISHEDABOVEWECANSEEFROMTABLE2THATTHEERRORISAPPROXIMATELY213,WHICHSHOWSTHATTHEMODELISSUITABLEFORTHISSPACECURVETABLE2CMMSCOORDINATEANDNEURALNETWORKPREDICTCOMPAREDITISNOTINCLUDEDINANYORIGINAL22SETSDATABASEITEMSCMMSNEURALNETWORKERRORVALUESCOORDINATEPREDICTCMMSPREDICT/COORDINATECMMSCOORDINATE1125,1601101,1602135CREATETHEINJECTIONMOULDMODELSIMILARLY,THERELATIONSHIPISESTABLISHEDBETWEENINPUTPARAMETERSGATELOCATIONANDGATESIZEANDTHEOUTPUTPARAMETERDEFORMATIONDURINGTHEINJECTIONPROCESSTOBUILDACOMPLETEABDUCTIVENETWORK,THEFIRSTREQUIREMENTISTOTRAINTHEDATABASETHEINFORMATIONGIVENBYTHEINPUTANDTHEOUTPUTDATAMUSTBESUFFICIENTTHUS,THETRAININGFACTORGATELOCATIONFORABDUCTIVENETWORKTRAININGSHOULDBESATISFACTORYFORMAKINGDEFECTFREEPRODUCTSFIGURE2SHOWSTHESIMULATIONOFFEMMOULDFLOWTABLE3SHOWSTHEPOSITIONOFTHEGATEANDTHEMAXIMUMDEFORMATIONOFTHEPRODUCTOBTAINEDFROMMOULDFLOWANALYSISBASEDONTHEDEVELOPMENTOFTHEINJECTIONMOULDMODEL,THREELAYERABDUCTIVENETWORKS,WHICHARECOMPRISEDOFINJECTIONMOULDCONDITIONSANDTHEINJECTIONRESULTSDEFORMATION,ARESYNTHESISEDAUTOMATICALLYTHEYARECAPABLEOFPREDICTINGACCURATELYTHEPRODUCTSTRAINTHERESULTOFINJECTIONMOULDEDPRODUCTUNDERVARIOUSCONTROLPARAMETERSALLPOLYNOMIALEQUATIONSUSEDINTHISNETWORKARELISTEDINAPPENDIXBPSE23105TABLE4COMPARESTHEERRORPREDICTEDBYTHEABDUCTIVEMODELANDTHESIMULATIONCASETHESIMULATIONCASEISEXCLUDEDFROMTHE22SETSOFSIMULATIONCASESFORESTABLISHINGTHEMODELTHISSETOFDATAISUSEDTOTESTTHEAPPROPRIATENESSOFTHEMODELESTABLISHEDABOVEWECANSEEFROMTABLE4THATTHEERRORISFIG2THEDEFORMATIONOFFEMMOULDFLOWOPTIMUMGATEDESIGNOFFREEFORMINJECTIONMOULD301TABLE3GATELOCATIONANDTHEMAXIMUMSTRAINRELATIONSHIPSETNUMBERXCOORDINATEYCOORDINATEGATEWIDTHGATELENGTHPRODUCEMAXSTRAIN100246052511475034821634330715303153332835087519125027104529204105229502858573105605251147503017693409071530526711332350875191250236981298394105229502517913855570525114750278810141273407153027731113699670875191250298812129611910522950299713100021030525114750257614933231607153026241586425280875191250254216798273910522950249517787283105251147502503187802929071530245619783303408751912502596207603130105229502457217073215052511475024992261132490715302511TABLE4MOULDFLOWSIMULATEDANDNEURALNETWORKPREDICTCOMPAREDITISNOTINCLUDEDINANYORIGINAL22SETDATABASEITEMSFEMMOULDFLOWNEURALNETWORKSIMULATIONPREDICTXCOORDINATE11011101YCOORDINATE160160GATEWIDTH1818GATEHEIGHT0909PRODUCEMAXDEFORMATION0317803325ERRORVALUES462FEMPREDICT/FEMAPPROXIMATELY462,WHICHSHOWSTHATTHEMODELISSUITABLEFORTHISMODELREQUIREMENT6SIMULATIONANNEALINGTHEORYIN1983,ATHEORYTHATWASCAPABLEOFSOLVINGTHEGLOBALOPTIMISATIONPROBLEMWASDEVELOPEDFORTHEOPTIMISEDPROBLEMTHECONCEPTWASAPOWERFULOPTIMISATIONALGORITHMBASEDONTHEANNEALINGOFASOLIDWHICHSOLVEDTHECOMBINATORIALOPTIMISATIONPROBLEMOFMULTIPLEVARIABLESWHENTHETEMPERATUREISTANDENERGYE,THETHERMALEQUILIBRIUMOFTHESYSTEMISABOLTZMANDISTRIBUTIONPR1ZTEXPSEKBTD18ZTNORMALISATIONFACTORKBBOLTZMANCONSTANTEXPE/KBTBOLTZMANFACTORMETROPOLIS24PROPOSEDACRITERIONFORSIMULATINGTHECOOLINGOFASOLIDTOANEWSTATEOFENERGYBALANCETHEBASICCRITERIONUSEDBYMETROPOLISISANOPTIMISATIONALGORITHMCALLED“SIMULATEDANNEALING”THEALGORITHMWASDEVELOPEDBYKIRKPATRICKETAL20INTHISPAPER,THESIMULATIONANNEALINGALGORITHMISUSEDTOSEARCHFORTHEOPTIMALCONTROLPARAMETERSFORGATELOCATIONFIGURE3SHOWSTHEFLOWCHARTOFTHESIMULATEDANNEALINGSEARCHFIRST,THEALGORITHMISGIVENANINITIALTEMPERATURETSANDAFINALTEMPERATURETE,ANDASETOFINITIALPROCESSVECTORSOXTHEOBJECTIVEFUNCTIONOBJISDEFINED,BASEDONTHEINJECTIONPARAMETERPERFORMANCEINDEXTHEOBJECTIVEFUNCTIONCANBERECALCULATEDFORALLTHEDIFFERENTPERTURBEDCOMPENSATIONPARAMETERSIFTHENEWOBJECTIVEFUNCTIONBECOMESSMALLER,THEPETURBEDPROCESSPARAMETERSAREACCEPTEDASTHENEWPROCESSPARAMETERSANDTHETEMPERATUREDROPSALITTLEINSCALETHATISTI1TICT19WHEREIISTHEINDEXFORTHETEMPERATUREDECREMENTANDTHECTISTHEDECAYRATIOFORTHETEMPERATURECT,1HOWEVER,IFTHEOBJECTIVEFUNCTIONBECOMESLARGER,THEPROBABILITYOFACCEPTANCEOFTHEPERTURBEDPROCESSPARAMETERSISGIVENASPROBJEXPFDOBJKBTG20WHEREKBISTHEBOLTZMANCONSTANTANDDOBJISTHEDIFFERENTINTHEOBJECTIVEFUNCTIONTHEPROCEDUREISREPEATEDUNTILTHETEMPERATURETIAPPROACHESZEROITSHOWSTHEENERGYDROPPINGTOTHELOWESTSTATEONCETHEMODELOFTHERELATIONSHIPAMONGTHEFUNCTIONSOFTHEGATELOCATION,THEINPUTPARAMETERSANDOUTPUTPARAMETERSAREESTABLISHED,THISMODELCANBEUSEDTOFINDTHEOPTIMALPARAMETERFORTHEGATELOCATIONTHEOPTIMALPARAMETERFORTHEPROCESSCANBEOBTAINEDBYUSINGTHEOBJECTIVEFUNCTIONTOSERVE302JCLINFIG3FLOWCHARTOFTHESIMULATEDANNEALINGSEARCHINGASASTARTINGPOINTTHEOBJECTIVEFUNCTIONOBJISFORMULATEDASFOLLOWSOBJW1XCOORDINATEW2YCOORDINATE21W3GATEWIDESIZEW3GATEHEIGHTSIZEWHEREW1,W2,ANDW3ARETHEWEIGHTFUNCTIONSTHECONTROLPARAMETRICOFTHEX,YLOCATIONSHOULDCOMPLYWITHTHEPARTSURFACEPARAMETEREQUATIONTHATMEANSTHEBASICCONDITIONOFOPTIMISATIONSHOULDFALLWITHINACERTAINRANGE1THEXCOORDINATEVALUEOBTAINEDFROMOPTIMISATIONSHOULDBELARGERTHANTHEMINIMUMXCOORDINATEVALUE,ANDSMALLERTHANTHEMAXIMUMXCOORDINATEVALUE2THEYCOORDINATEVALUEOBTAINEDFROMOPTIMISATIONSHOULDBELARGERTHANTHEMINIMUMYCOORDINATEVALUE,ANDSMALLERTHANTHEMAXIMUMXCOORDINATEVALUETHEX,YCOORDINATEDEPENDSONTHEAPPENDIXANEURALNETWORKEQUATION3THEGATEWIDESIZEOBTAINEDFROMOPTIMISATIONSHOULDBELARGERTHANTHEMINIMUMSIZEOFGATEWIDTH,ANDSMALLERTHANTHEMAXIMUMGATEWIDTHSIZE4THEGATEHEIGHTSIZEOBTAINEDFROMOPTIMISATIONSHOULDBELARGERTHANTHEMINIMUMSIZEOFGATEHEIGHT,ANDSMALLERTHANTHEMAXIMUMGATEHEIGHTSIZETHEINEQUALITIESAREGIVENASFOLLOWSTHESMALLESTXCOORDINATEVALUE,XCOORDINATEVALUE,THELARGESTXCOORDINATEVALUE22THESMALLESTYCOORDINATEVALUE,YCOORDINATEVALUE,THELARGESTYCOORDINATEVALUE23THESMALLESTGATEWIDTHSIZE,GATEWIDTHSIZE,THELARGESTWIDTHGATESIZE24THESMALLESTGATEHEIGHTSIZE,GATEHEIGHTSIZE,THELARGESTHEIGHTGATESIZE25THEUPPERBOUNDCONDITIONSSHOULDBEKEPTTOANACCEPTABLELEVELSOASTOFINDTHEOPTIMALACCCURATEGATECOORDINATE7RESULTSANDDISCUSSIONANEXAMPLEOFTHESIMUL
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东依顿电子科技股份有限公司招聘成本会计岗等人员考前自测高频考点模拟试题及答案详解(各地真题)
- 2025江苏无锡市滨湖区卫生健康系统事业单位招聘高端、紧缺性人才14人(长期)模拟试卷及完整答案详解一套
- 2025年河北衡水冀州区公开招聘留置保障队伍辅警人员12名模拟试卷完整参考答案详解
- 2025河南郑州大学招聘500人模拟试卷及答案详解一套
- 2025年福建省大学生志愿服务乡村振兴计划招募500人考前自测高频考点模拟试题及一套参考答案详解
- 2025年湖南邵阳市农村产权交易中心有限公司招聘合同制员工考前自测高频考点模拟试题及参考答案详解一套
- 2025年江苏常州经济开发区社会保障和卫生健康局下属事业单位公开招聘卫技人员14人模拟试卷附答案详解
- 2025内蒙古自治区农牧业科学院招聘93人考前自测高频考点模拟试题及答案详解(典优)
- 2025安徽蚌埠市城市投资控股集团有限公司所属公司社会招聘19人(第二批)考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年上半年四川乐山职业技术学院赴四川大学考核招聘10人考前自测高频考点模拟试题及答案详解(全优)
- 2025年国家能源集团宁夏煤业有限责任公司招聘笔试考试题库+答案
- 中国邮政储蓄银行2026校园招聘考试参考试题及答案解析
- 网络信息安全培训案例分享课件
- 社区获得肺炎护理
- 高压氧舱培训课件
- 安徽省九师联盟2026届高三9月开学联考英语(含答案)
- 锁骨骨折诊疗指南
- 矩阵论简明教程全课件
- 学校学生欺凌治理委员会成员及工作职责、实施方案范文
- 2025年有限空间作业安全知识考试题库附答案
- 2025年绿化工技师试题及答案
评论
0/150
提交评论