


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中国 高考数学母题一千题 (第 0001 号 ) 递缩等比数列前 n 项和的上确界 一类 数列 求和 不等式 的 背景 我们把首项 ,公比 q 满足 00,公比 q 满足 00,00,0n+1n N*. 解析 :( )(法一 )必要 性 :由 0,1 0,1 c 0,1; 充分 性 :由 c 0,1,用数学归纳法 证明 :0,1:当 n=1时 , 0,1; 假设 0,1(k 1),则 =0,且 =c+1 0,1;由 数学归纳法 原理知 ,对任意 n N*,0,1; ( )由 ( )知 ,当 01-(3c)=1c)3c)2(1c) + + 2(3c)+(3c)2+ +(3c)(n+1)+(3c)+(3c)2+ +(3c)n+1-2cc 3(1 n+1 点评 :构造应用的突出特点是题中给出待证的通项不等式 ,该不等式的另一边恰是一个递缩等比数列的函数 ;利用 该不等式 和 递缩等比数列的 上确界 即可证 明 待证的 前 等式 . 1.(2005年 湖南 高考试题 )已知数列 (n N*)为等差 数列 ,且 ,. ( )求数列 通项公式 ; ( )证明 :121 +231 + +nn 11 ,令 n(n N). ( )求 c1,c2, ( )证明 :121n+121nc+ ( )证明 :nk ,anx11( 1x(n=1,2, ; ( )证明 :a1+ +2 ( )设等差数列 的公差为 d,由 , d=1 n n+1; ( )由 n+1nn 11 =(21 )n121 +231 + +nn 11 =1-(21 )nc+ 221n 11414 1212 nn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京第二外国语学院中瑞酒店管理学院《工程图学B(1)》2023-2024学年第二学期期末试卷
- 上海电子信息职业技术学院《计算机组成原理与汇编语言程序设计》2023-2024学年第二学期期末试卷
- 郑州幼儿师范高等专科学校《资本运营与公司治理》2023-2024学年第二学期期末试卷
- 河北石油职业技术学院《阅读与欣赏唐诗宋词》2023-2024学年第二学期期末试卷
- 浙江科技学院《风险投资运作与管理》2023-2024学年第二学期期末试卷
- 漳州卫生职业学院《英语阅读(3)》2023-2024学年第二学期期末试卷
- 人教版角的分类
- 2024年高导热石墨材料资金筹措计划书代可行性研究报告
- 食品试验设计方法第五讲
- 我国幼儿园教育的目标任务和原则
- 广东省广州市增城区2025届九年级下学期中考一模历史试卷(含答案)
- 2025年云计算与大数据技术考试试题及答案
- 纳西族文化课件
- 矿石加工中的化学工艺安全技术考核试卷
- 水利水电工程技术术语全
- 2024-2025教科版科学一年级下册第二单元测试卷及答案
- 中国共产主义青年团纪律处分条例试行解读学习
- 医疗器械研究报告医疗器械产业现状及未来发展趋势分析报告(2025年)
- 数字孪生技术在智慧能源系统中的挑战与机遇
- 抛石专项施工方案
- 电力增材再造技术的创新与发展
评论
0/150
提交评论