已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆柱的侧面展开图教学分析圆柱的侧面展开图教学分析通过剪一剪的活动来探索圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!” “展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始拿出另一个准备好的圆柱,然后沿着斜线剪开,平行四边形展现在同学们面前。紧接着用长方形的面积推导侧面积公式,长方形的长是圆柱的底面周长 ,宽是圆柱的高。得出圆柱的侧面积等于底面周长乘高。通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。数学的思想方法是数学的灵魂。 “数学首先是猜想,然后才是证实(波利亚语) 。 ”本教学中,我先让学生猜一猜圆柱的侧面展开会是一个什么图形,开始学生由于受书本知识的影响,只能说出展开图是长方形,而后通过我的引导:“想一想假如不是沿着一条高展开,可能会出现什么图形呢?”学生马上活跃了起来,跳出了原来的定势思维,合理猜想并通过亲身操作验证了自己的猜想,得出了多种展开图形。这样不仅增强了学生有意识地运用转化思想方法去解决新问题的意识,而且通过“直觉-猜想-验证-应用”的过程,学习探究发现新知识,提高学习能力。这样的教学创造了“人人参与、人人有体验、人人成功”的氛围。圆柱的侧面展开图教学分析通过剪一剪的活动来探索圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!” “展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始拿出另一个准备好的圆柱,然后沿着斜线剪开,平行四边形展现在同学们面前。紧接着用长方形的面积推导侧面积公式,长方形的长是圆柱的底面周长 ,宽是圆柱的高。得出圆柱的侧面积等于底面周长乘高。通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。数学的思想方法是数学的灵魂。 “数学首先是猜想,然后才是证实(波利亚语) 。 ”本教学中,我先让学生猜一猜圆柱的侧面展开会是一个什么图形,开始学生由于受书本知识的影响,只能说出展开图是长方形,而后通过我的引导:“想一想假如不是沿着一条高展开,可能会出现什么图形呢?”学生马上活跃了起来,跳出了原来的定势思维,合理猜想并通过亲身操作验证了自己的猜想,得出了多种展开图形。这样不仅增强了学生有意识地运用转化思想方法去解决新问题的意识,而且通过“直觉-猜想-验证-应用”的过程,学习探究发现新知识,提高学习能力。这样的教学创造了“人人参与、人人有体验、人人成功”的氛围。圆柱的侧面展开图教学分析通过剪一剪的活动来探索圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!” “展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始拿出另一个准备好的圆柱,然后沿着斜线剪开,平行四边形展现在同学们面前。紧接着用长方形的面积推导侧面积公式,长方形的长是圆柱的底面周长 ,宽是圆柱的高。得出圆柱的侧面积等于底面周长乘高。通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。数学的思想方法是数学的灵魂。 “数学首先是猜想,然后才是证实(波利亚语) 。 ”本教学中,我先让学生猜一猜圆柱的侧面展开会是一个什么图形,开始学生由于受书本知识的影响,只能说出展开图是长方形,而后通过我的引导:“想一想假如不是沿着一条高展开,可能会出现什么图形呢?”学生马上活跃了起来,跳出了原来的定势思维,合理猜想并通过亲身操作验证了自
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年黄岩保安实训考试题及答案
- 水解酵母分离工风险评估能力考核试卷含答案
- 公司真空电子器件金属零件制造工岗位标准化技术规程
- 稀土精矿分解工安全意识强化测试考核试卷含答案
- 电动轮自卸车机械装配工岗位职业健康技术规程
- 公司数控型材专用切割机操作工岗位工艺技术规程
- 固体树脂版制版员岗前实操综合知识考核试卷含答案
- 锅炉管阀检修工保密意识水平考核试卷含答案
- 公司钻床工岗位工艺作业技术规程
- 三聚氰胺装置操作工创新意识能力考核试卷含答案
- 食品检测专业职业生涯规划
- 监理安全制度
- 营养强化盐,你了解多少-
- 病例汇报PPT模板
- 英语四级单词4500
- 肿瘤学-宫颈癌(双语)
- GB/T 34988-2017信息技术单色激光打印机用鼓粉盒通用规范
- 最新部编版人教版一年级语文上册《江南》优质教学课件
- 艰苦边远地区范围和类别表
- 《旅游法》与旅游文明
- 《国际私法》教学全套课件
评论
0/150
提交评论