




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版初中数学平行四边形公开课教学设计平行四边形教学设计授课教师:张淑媛 指导教师:刘金英 刘士勇 天津市课题组成员:李果民 刘金英 何志平 顾洪敏 刘士勇 张淑媛 张宗玲 王振红 李 庆 袁 爽 刘静波一、内容和内容解析平行四边形是“空间与图形”领域中最基本的几何图形,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包含其性质在生产、生活各领域的实际应用平行四边形,是建立在前面学习了四边形的概念和性质的基础之上,将要学习的特殊的四边形本节课是平行四边形的第一课时,主要研究平行四边形的概念和边、角的性质关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”在平行四边形的定义中,大前提是“四边形(种概念) ”,条件是“两组对边分别平行(属差) ” “两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质关于平行四边形边、角的性质, “平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行” ,是由“相邻的角互补”产生的思维的一种深化同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位教学重点:平行四边形的概念和性质二、目标和目标解析(1)教学目标:掌握平行四边形的概念及性质学会用分析法、综合法解决问题体会特殊与一般的辩证关系逐步养成良好的个性思维品质(2)目标解析:使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明通过有关的证明及应用,教给学生一些基本的数学思想方法使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质平行四边形教学设计授课教师:张淑媛 指导教师:刘金英 刘士勇 天津市课题组成员:李果民 刘金英 何志平 顾洪敏 刘士勇 张淑媛 张宗玲 王振红 李 庆 袁 爽 刘静波一、内容和内容解析平行四边形是“空间与图形”领域中最基本的几何图形,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包含其性质在生产、生活各领域的实际应用平行四边形,是建立在前面学习了四边形的概念和性质的基础之上,将要学习的特殊的四边形本节课是平行四边形的第一课时,主要研究平行四边形的概念和边、角的性质关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”在平行四边形的定义中,大前提是“四边形(种概念) ”,条件是“两组对边分别平行(属差) ” “两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质关于平行四边形边、角的性质, “平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行” ,是由“相邻的角互补”产生的思维的一种深化同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位教学重点:平行四边形的概念和性质二、目标和目标解析(1)教学目标:掌握平行四边形的概念及性质学会用分析法、综合法解决问题体会特殊与一般的辩证关系逐步养成良好的个性思维品质(2)目标解析:使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明通过有关的证明及应用,教给学生一些基本的数学思想方法使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质平行四边形教学设计授课教师:张淑媛 指导教师:刘金英 刘士勇 天津市课题组成员:李果民 刘金英 何志平 顾洪敏 刘士勇 张淑媛 张宗玲 王振红 李 庆 袁 爽 刘静波一、内容和内容解析平行四边形是“空间与图形”领域中最基本的几何图形,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包含其性质在生产、生活各领域的实际应用平行四边形,是建立在前面学习了四边形的概念和性质的基础之上,将要学习的特殊的四边形本节课是平行四边形的第一课时,主要研究平行四边形的概念和边、角的性质关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”在平行四边形的定义中,大前提是“四边形(种概念) ”,条件是“两组对边分别平行(属差) ” “两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质关于平行四边形边、角的性质, “平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行” ,是由“相邻的角互补”产生的思维的一种深化同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位教学重点:平行四边形的概念和性质二、目标和目标解析(1)教学目标:掌握平行四边形的概念及性质学会用分析法、综合法解决问题体会特殊与一般的辩证关系逐步养成良好的个性思维品质(2)目标解析:使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明通过有关的证明及应用,教给学生一些基本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游公司经营管理制度
- 制造业公司运营管理制度
- 数字经济新质生产力数字化转型数据要素流通交方案
- 搞笑放松班会课课件
- 多媒体远程教学设备管理维护工作总结
- 数字智慧方案5892丨智慧金融构建新一代核心银行系统全面推动数智化转型
- Photoshop图形图像处理教程第8章(4)章节
- 睡觉安全小班安全课件
- 24小时自动售药机讲课件
- 提高记忆力讲课件
- 任务6.4 IBP盘认知与操作课件讲解
- 2024年首届全国“红旗杯”班组长大赛考试题库800题(含答案)
- JT-T-891-2014道路车辆清障救援操作规范
- 基于3D打印技术的个性化正畸矫治器设计
- 国际化竞争格局下的动漫游戏行业发展策略
- 河南省郑州市中原区2023-2024学年八年级下学期期末历史试卷
- GB/T 44087-2024北斗三号区域短报文通信用户终端技术要求与测试方法
- GB/T 43868-2024电化学储能电站启动验收规程
- 资本论在中国智慧树知到期末考试答案2024年
- 传染病预防控制工作方案医院
- 金融工程学智慧树知到期末考试答案2024年
评论
0/150
提交评论