全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BroilerGrowthPerformanceAnalysis:fromCorrelationAnalysis,MultipleLinearRegression,toNeuralNetworkMeiyanXiao,PeijieHuang*,PiyuanLin,ShangweiYanCollegeofInformaticsSouthChinaAgriculturalUniversityGuangzhou,China*CorrespondingAuthor:AbstractThepurposeofthisstudyistoinvestigatethedataWeusethebroilergrowthdatasetofthemostfamousfittingforbroilergrowthperformanceparameters.Inthispaper,poultryraisingcompanyinChinatoevaluateourapproachandthegradualadvancinganalysismethods,fromcorrelationtheresultsshowtheeffectivenessofourapproach.analysis,multiplelinearregression,toneuralnetwork,areproposed.Themeantechnologyroadmapis:firstly,correlationTherestofthispaperisorganizedasfollows.Inthenextanalysisisusedtodetectthedegreeofcorrelationbetweenthesection,wepresentthegradualadvancinganalysismethods.broilergrowthperformanceparameterandthecandidateinputExperimentsarepresentedanddiscussedinSection3.Finally,variables.AndthenchoosethepredictorvariablesthathavegoodSection4listssomeconclusions.correlationwiththedependentvariabletobuildthemultiplelinearregressionorneuralnetworkpredictionmodel,orboth,II.GRADUALADVANCINGANALYSISMETHODSaccordingtothelineardegreeofcorrelations.CombinedpredictionmaybechoseoncebothmodelshavegoodpredictionTheexploremethodsinourstudyofdatafittingforbroilerperformances.Weusethebroilergrowthdatasetofthemostgrowthperformanceparametersisdevelopedstepbystep,fromfamouspoultryraisingcompanyinChinatoevaluateourcorrelationanalysistoMLR,andthentononlinearfittingapproachandtheresultsshowtheeffectivenessofourapproach.meansbyneuralnetwork.Keywords-growthperformance;correlationanalysis;multipleA.TechnologyRoadmaplinearregression;neuralnetwork;broilerbreedingThetechnologyroadmapofourgradualadvancinganalysismethodsisshowninFig.1.I.INTRODUCTIONBioinformatics1isapromisingyoungfieldthatappliescomputertechnologyinbiologyanddevelopsalgorithmsandmethodstomanageandanalyzebiologicaldata2.Forthemodernpoultrybreedingcompanies,itisdeservedtopredictthepoultrygrowthperformanceparameters,suchasrateforsale,feedintake,dailygainandfeedconversionratio,basedonthemassivehistoricaldatagraduallycumulatedinproduction.However,becauseofthecomplexityanduncertaintybringbytheinfluenceofenvironmentalandphysiologicalfactors,informationintegrationofbiologicaldataisachallenge.Inthispaper,thegradualadvancinganalysismethods,fromcorrelationanalysis,multiplelinearregression(MLR)3,toneuralnetwork4,areproposedtostudythedatafittingforbroilergrowthperformanceparameters.Inbroilerbreeding,seasonalfactorplaysanimportantpart.Ontheeffectofseasonalfactors,broilergrowthperformanceFigure1.Technologyroadmapoftheproposedmethodscanbeobviouslydifferent.SobroilergrowthperformanceTheassociationbetweenvariablescanbelinearorparametershaveobviousseasonalvariation.Seasonalfactorsnonlinear.Correlationanalysisismostlyusedtoevaluatelinearincludeairtemperature,precipitation,windspeed,pressure,relationships.Associationsbetweentwovariablescanberelativehumidity,etc.Thispapertakestheinfluenceoftheairanalyzedwithabivariatecorrelationanalysis.Whiletemperaturetotherateforsaleforexampletointroducetheassociationsbetweenone(dependent)variableandasetoftwobroilergrowthperformanceanalysismethods.ormore(independent)variables,whichhavestrongThisworkissupportedbytheSci&TechResearchProjectofGuangdongProvinceunderGrantNo.2007A020300010,theNational863High-TechResearch&DevelopmentPlanofChinaunderGrantNo.2006AA10Z246,andtheNewDisciplineSupportingFundofSouthChinaAgriculturalUniversityunderGrantNo.2007X022.NotlinearenoughDependentvariableIndependentvariablesCorrelationAnalysisComparisonCombinedpredictionwhenbothhavegoodpredictresponsesMultipleLinearRegressionNeuralNetworkStronglinercorrelation978-1-4244-4713-8/10/$25.002010IEEEcorrelationswiththedependentvariable,canbestudiedusingmultiplecorrelation(regression)analysis,suchasMLR.Alternatively,ifthedegreeofcorrelationsisnotlinearenoughbetweenthedependentvariableandtheindependentvariables,somenonlinearfittingsprovidegoodchoose.Inthenonlinearfittingmethods,comparingtoGompertzthatusingleastsquaresinnonlinearregression,neuralnetworkisprovedtohasgoodabilitytopredictresponses5.Finally,inpracticalapplication,ifbothMLRandneuralnetworkhavegoodpredictionperformances,wecanconsiderthecombinedprediction.B.CorrelationAnalysisAcorrelationanalysisisastatisticalprocedurethatevaluatestheassociationbetweenthedependentvariableandtheindependentvariablesrespectively.Thesimplestwaytofindoutqualitativelythecorrelationistoplotthedata.AndwecanquantifythedegreeofcorrelationbyspecifyingthecorrelationcoefficientR,definedasyyinixxiyxnR=111(1)wherexandxdenotethesamplemeanandthesamplestandarddeviationrespectivelyforthevariablexandyandydenotethesamplemeanandthesamplestandarddeviationrespectivelyforthevariabley.Assumethataperfectlinearrelationshipexistsbetweenthevariablesxandy,i.e.,baxyii+=fori=1,2,.,nwith0a.Nowverifyusingthedefinitionsofthemeanandthevariancethatbaxy+=andxya=.Thisimpliesfrom(1)thatR=a/|a|.Orinotherwords,R=1ifa0andR=-1ifa0.ThecaseR=1correspondstothemaximumpossiblelinearpositiveassociationbetweenxandy,meaningthatallthedatapointswilllieexactlyonastraightlineofpositiveslope.Similarly,R=-1correspondstothemaximumpossiblenegativeassociationbetweenthestatisticalvariablesxandy.Ingeneral,-1R1withthemagnitudeandthesignofRrepresentingthestrengthanddirectionrespectivelyoftheassociationbetweenthetwovariables.C.MultipleLinearRegressionOncewehaveestablishedthatastrongcorrelationexistsbetweenthedependentvariableandmorethanoneindependentvariable,wewilluseMLR.AlinearregressionmodelthatcontainsmorethanonepredictorvariableiscalledaMLRmodel.ThefollowingmodelisaMLRmodelwithtwopredictorvariables,1xand2xuxxy+=2210(2)Themodelislinearbecauseitislinearintheparameters,0,1and2.Themodeldescribesaplaneinthethreedimensionalspaceofy,1xand2x.Theparameter0istheinterceptofthisplane.Parameters1and2arereferredtoaspartialregressioncoefficients.Parameter1representsthechangeinthemeanresponsecorrespondingtoaunitchangein1xwhen2xisheldconstant.Parameter2representsthechangeinthemeanresponsecorrespondingtoaunitchangein2xwhen1xisheldconstant.uistherandomerror.D.NeuralNetworkNeuralnetwork4offeranalternativetoregressionanalysisforbiologicalmodeling.Inrelationtosystemmodeling,thedifferencebetweenartificialneuralnetworksandregressionanalysisisthatanequationisnotassumed,tighterfitsofdataarepossible,anditispossibletoworkwith“noisy”data.Verylittleresearchhasbeenconductedtomodelanimalgrowthusingartificialneuralnetworks5,6.Inourstudy,wechoosetheBack-Propagation(BP)neuralnetwork,whichisafeed-forwardmulti-layernetworkbasedontheBack-PropagationalgorithmdevelopedbyRumelhartandMcCelland7andhasbecomeoneofthemostwidelyusedneuralnetworkinpractice.TheActivationTransferFunction(ATF)ofaBPnetwork,usually,isadifferentiableSigmoid(S-shape)function,whichhelpstoapplynon-linearmappingfrominputstooutputs.Atwo-layerBPnetworkwasusedinourmodel.Thegoodnessoffitsfortheobtainedneuralnetworkmodelwascalculatedbymeansquareerror(MSE)andmeanpercentageerror(MPE).TheMPEandMSEarecomputedas=nttttyyynMPE11(3)nyyMSEnttt=12)(4)wheretyequalstheobservedvalueattimet,tyequalstheestimatedvalue,andnequalsthenumberofobservations.III.EXPERIMENTALRESULTSA.ExperimentSetupWetakethebreedingareaofGuangdongprovinceofChinaforexampletoevaluateourapproach.Thedatasetoften-daymeanairtemperatureisprovidedbyGuangdongProvincialClimateandAgrometeorologicalCente.AndthebroilergrowthdatasetisprovidedbyGuangdongWensFoodGroupLimitedCompany,whichisthemostfamouspoultryraisingcompanyinChina.Andwetakehenofshort-feetbuffBforexampletoevaluatetheinfluenceoftheairtemperaturetotherateforsale.Weselecthengrowthdataof2007,whichconsistsof5714data,andremain4209dataafterdatapreprocessing,whichistoeliminateabnormaldata,suchasabnormalrateforsale,nulldayage,andnullweight.FortheMLRandneuralnetworkmodels,weselect70%samplesrandomlyfortraining,andtherestfortesting.B.CorrelationAnalysisConsideringthatthefullgrowingstageofbroilercanbedividedintochicklingstage(thefirst4weeks)andadultchickenstage.Differentstageshavedifferentphysiologicalcharacteristic.So,inourstudy,firstly,weusescatterplotstoshowtherelationshipbetweentherateforsaleandtheten-daymeanairtemperatureofhen,chicklingstage,andadultchickenstagerespectively,whichareshowninFig.2toFig.4.Andthen,thedegreesofcorrelationsarequantifiedbycorrelationcoefficientR,whichisshowninTable1.0.920.930.940.950.960.970.9871217222732Ten-daymeanairtemperature()RateforsaleFigure2.Ten-daymeanairtemperatureofhenVSrateforsale0.940.950.960.970.9871217222732Ten-daymeanairtemperature()RateforsaleFigure3.Ten-daymeanairtemperatureofchicklingstageVSrateforsale0.940.950.960.970.9871217222732Ten-daymeanairtemperature()RateforsaleFigure4.Ten-daymeanairtemperatureofadultchickenstageVSrateforsaleTABLEI.CORRELATIONCOEFFICIENTCaseRTen-daymeanairtemperatureofhenandrateforsale0.8506Ten-daymeanairtemperatureofchicklingstageandrateforsale0.8932Ten-daymeanairtemperatureofadultchickenstageandrateforsale0.8594AswecanseefromTable1,correlationcoefficientRoftherateforsaleandtheten-daymeanairtemperatureofchicklingstageandadultchickenstageisbiggerthanthatoftherateforsaleandtheten-daymeanairtemperatureofhen,whichindicatesthedivisionofchicklingstageandadultchickenstagetodofurtherresearchisarightchoose.C.MultipleLinearRegressionThefollowingMLRequationisfitforthetrainingdata:21057.00755.0367.93xxy+=(5)whereyistherateforsale,and1xand2xaretheten-daymeanairtemperatureofchicklingstageandadultchickenstagerespectively.D.NeuralNetworkSimilartotheMLRmodel,weusetheten-daymeanairtemperatureofchicklingstageandadultchickenstageasinputs,andsettherateforsaleasoutput.Fig.5showstherealobservedvaluesandpredictedrateforsaleforbothMLRandneuralnetwork(labeledas“NN”inFig.5)methods,usingthetestingdata.Figure5.ComparsionofMLRandneuralnetworkinpredictionTable2showsthestatisticsfortheMLRandneuralnetworkforpredictingbroilerrateforsale.TABLEII.MODELSTATISTICSFORMLRANDNEURALNETWORKFORPREDICTINGRATEFORSALEModelStatisticMPEMSEMLR0.52%4.328E-05Neuralnetwork0.47%3.538E-05AswecanseefromTable2,neuralnetworkmodeloutperformsMLRmodelinbothMPEandMSE.Butfromtheresult,wecanseetheMLRmodelalsohasgoodpredictionperformances.IV.CONCLUSIONSInthispaper,wehavedealtwiththeresearchofthedatafittingforbroilergrowthperformanceparameters.Gradualadvancinganalysismethods,fromcorrelationanalysis,MLR,toneuralnetwork,areproposed.WeusethebroilergrowthdatasetofthemostfamouspoultryraisingcompanyinChina,andtakestheinfluenceoftheairtemperaturetotherateforsaleforexampletoevaluateourapproach.Aswecanseefromexperiment,correlationanalysisisusedtodetectthatthedivisionofchicklingstageandadultchickenstageisgoodforfurtherresearch,sincetheten-daymean
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 包头铁道职业技术学院2026年赴铁路院校公开招聘急需专业教师的备考题库参考答案详解
- 2026年江安县交通运输局关于公开招聘编外聘用人员15人的备考题库参考答案详解
- 2026年通辽市科尔沁区第四人民医院专科医师招聘19人备考题库及一套参考答案详解
- 2026年永州市零陵区阳光社会工作服务中心招聘人员备考题库及答案详解一套
- 2026年济南先进动力研究所招聘备考题库有答案详解
- 中国水产科学研究院东海水产研究所2026年度第一批统一公开招聘备考题库及参考答案详解1套
- 伊利集团2026届校园招聘备考题库及一套完整答案详解
- 养老院入住老人社会救助与福利制度
- 中国科学院西北高原生物研究所2026年海内外人才招聘备考题库及答案详解1套
- 六盘水市水城区区管国有企业2025年面向社会公开招聘法务工作人员备考题库带答案详解
- 营养风险筛查2002临床应用
- (2025年版)慢性肾脏病高磷血症临床管理中国专家共识解读
- 2025年菏泽巨野县高铁北站公开招聘客运服务人员(6人)备考笔试试题及答案解析
- 2026年陕西能源职业技术学院教师招聘(42人)参考笔试题库附答案解析
- 制造部部门介绍
- 2025年榆林市住房公积金管理中心招聘(19人)笔试考试参考题库及答案解析
- 福州古厝课件
- 2026年鞍山职业技术学院单招职业技能考试题库参考答案详解
- 眩晕护理的研究方向与趋势
- 2025年新公开选拔中小学校长笔试试题与答案
- 2025年度吊灯市场调研:时尚美观、风格多样及餐厅客厅需求
评论
0/150
提交评论