轮边式全封闭湿式多盘制动器设计书_第1页
轮边式全封闭湿式多盘制动器设计书_第2页
轮边式全封闭湿式多盘制动器设计书_第3页
轮边式全封闭湿式多盘制动器设计书_第4页
轮边式全封闭湿式多盘制动器设计书_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 轮边式全封闭湿式多盘制动器设计书 汽车制动器是汽车上用以使外界 (主要是路面 )在汽车某些部分 (主要是车轮 )施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置。 车制动器的作用 制动器作用是:使行驶中的汽车按驾驶员的要求进行强制减速甚至使其停车;使已停驶的汽车在各种道路下 (包括坡道 )稳定驻车;使正下坡行驶的汽车的速度保持稳定。而对汽车起制动作用的只能是作用在汽车上并且方向与汽车行驶方向相反的外力,而这些外力的大小都是随意的、不可以控制的,因此汽车上就必须安装一系列专门装置用来实 现上述功能。 汽车制动器是指为了在技术上保证汽车的安全行驶,提高汽车的平均速度等,而在汽车上安装专门制动装置的制动机构。 车制动器的分类 汽车制动器一般包括行车制动装置和停车制动装置两种独立的装置。其中行车制动装置是由驾驶员用脚来操纵的,所以又称脚制动装置。停车制动装置是由驾驶员用手操纵的,所以又称手制动装置。 行车制动装置的功能是使正在行驶的汽车减速或在最短的距离内停车。而停车制动装置的功能是使已经停在各种路面上(包括坡道)的汽车保持静止不动。但是,有时在紧急情况下,两种制动装置可以 同时使用使其增加汽车制动效果。 但是有些特殊用途的汽车和经常在山区行驶的汽车,由于长期而又频繁地制动将会导致行车制动装置过热,所以在这些汽车上往往会增加各种不同型式的辅助制动装置,使其在运行时稳定车速。 制动器还可以分为摩擦式和非摩擦式两大类。摩擦式制动器是靠制动件与运动件之间的摩擦力制动;而非摩擦式制动器通过其结构形式可分为磁粉制动器(利用磁粉磁化所产生的剪力来制动)、磁涡流制动器(利用调节励磁电流来调节制动力矩的大小而是汽车制动)和水涡流制动器等。 按照制动件所处工作状态还可以分为常闭式制动器(常 处于紧闸状态,需施加外 2 力才可以解除制动)和常开式制动器(常处于松闸状态,需施加外力才可以进行制动)。 按照操纵方式可分为人力、液压、气压和电磁力操纵的制动器。 按照制动件的结构形式可以分为外抱块式制动器、内张蹄式制动器、带式制动器以及盘式制动器等;我们经常见到的就是块式制动器和盘式制动器 式制动器和盘式制动器 块式制动器也叫鼓式制动器,是一种传统的制动系统,他是通过制动块在制动轮 上压紧来实现制动的,现在的鼓式制动器主要是内张式,它的制动块位于制动轮的内侧,在制动的时候制动块向外张开,摩擦制动轮的 内侧,达到制动的目的。其结构图如下面 1 图 1式制动器 3 这种制动器的优点是有良好的自刹作用 ;而且 因为它的制造技术层次较低,也是最早使用的刹车系统,因此制造成本要比碟式刹车低。但是也有很多缺点, 鼓式制动器的制动效果和散热性要差许些,它制动力的稳定性也不好,在不同路面上的制动力变化很大,不容 易于掌握。并且由于散热性能差,在制动过程中会集中大量的热量。会使制动块和轮鼓在高温影响下发生极为复杂的变形,容易产生制动衰退和振抖现象,使得制动效果变差。而且鼓式制动器在使用一段时间后,需要定期调整刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉; 由于鼓式制动器是通过刹车来令片密封于刹车鼓内,造成刹车来令片磨损后的碎削无法散去,影响刹车鼓与来令片的接触面从而影响刹车性能 。 而且在下雨天沾了雨水后会发生打滑现象,严重时会造成刹车失灵的状况。 盘式制动器又称为碟式制动器,是取其形状而得名的。它是由液压控 制,制动盘用合金钢制造并固定在车轮上,随车轮转动。其结构图如下 1 图 1式制动器 盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,盘式制动器沿制动盘方向施力,制动轴不会受弯矩,径向尺寸小,制动性能稳定。但是它的成本高。 与鼓式制动器相比,它没有摩擦助势作用,因而制动器效能受摩擦系数的影响较 4 小,所以效能较稳定;浸水后效能降低较少,而且只需要经一两次制动就可恢复正常;而且输出制动力矩相同的情况下,尺寸和质量一般较小;制动盘沿厚度方向的 热膨胀量也很小,它不会像制动鼓的热膨胀那样使得制动器的间隙明显增加从而导致制动踏板行程太大;它很容易实现间隙自动调整,其它得保养修理作业也非常简单。所以现在车辆制动器多采用盘式制动器。 对于那些在工程矿山使用的机械车辆来说,由于它们通常是在路面极差(坡度陡、弯道多、经常有积水等)的煤矿井下工作 ,运行环境恶劣 ,巷道路面崎岖不平 ,巷道内多粉尘和煤泥 ,常有积水 ,并含有瓦斯 ,所以它们使用的制动器 ,除了要满足一定的制动力外 ,还必须具有防爆、防水、抗污染和稳定可靠的特性;而且车辆本身质量和负载很大,为了追求更高的工作效 率,就要使其车速提高很多,则对制动器的性能要求就更加严格了。 因为制动器性能的优劣直接影响到整车的性能。而其中盘式制动器中的全封闭式实施多盘制动器特别适用于煤矿井下作业。与传统的蹄鼓式制动器和钳盘式制动器相比 ,全封闭多盘湿式制动器具有以下特点 : 较小的体积下具有较大的制动力矩,元件承受的压力相应低;在产生较高温度时 ,不会引起失控和失爆; 使车辆在煤矿井下泥水路面行驶时 ,确保制动可靠; 使摩擦片上单位面积受压小 ,热稳定性好;摩擦片可以浸在油 中进行冷却,散热条件好,大大提高了它的使用寿命; 准化;只需要通过简单地改变摩擦片的数目,就可以得到很多不同制动力矩的制动器; 隙不需要调整; 这些优点使得全封闭湿式多盘制动器替代传统的蹄鼓式制动器 ,它会彻底解决了井下多泥水引起的制动失灵、失效的难题 ,从真正意义上实现了胶轮车辆制动系统的防爆与安全 ,可以极大地改善车辆制动的平稳性和对煤矿井下恶劣环境的适应性。为了车辆在井下工作安全 ,所以多采用性能较好的全封闭式湿式多盘式制动器。 式多盘式制动器的分类及其 原理 湿式多盘式制动器按照结构及其原理可以分为普通型湿式多盘式制动器、湿式多盘失压制动器和多功能湿式多盘式制动器三种。 普通型实施多盘式制动器是采用压力操纵来制动,卸压后弹簧解除制动。压力又进入制动油腔,作用在一个与摩擦片外径一样大小的活塞上,从而推动活塞来压紧摩 5 擦片进行制动。这种制动器一般安装在汽车的轮端,作为行车制动,它需一个液压系统操纵制动动作,一旦管路出现爆裂等故障就无法实现制动,会给汽车安全行使带来不便。为了保证汽车安全行驶就必须安装一个停车制动器,停车制动器一般采用失压制动,两套制动器虽然保证了 汽车的安全性,但是增加了零件的数量。 湿式多盘失压制动器是一种安全型湿式多盘式制动器,除了具有湿式多盘式制动器的特点以为对于汽车的安全行驶也起到非常重要的作用。使用湿式多盘失压制动器可以使液压制动系统简化,不需要第二套制动器,行车制动、停车制动和紧急制动都可以通过此制动器完成,不需要增加停车制动器,给汽车总体结构带来方便,实施多盘失压制动器采用弹簧进行制动,当制动管道的油压到了一定时就会推动活塞压紧摩擦片解除制动,踏下制动板时油压卸荷,弹簧就会推动活塞压紧摩擦片进行制动,当制动管道由于其他原因失压时,制动器 会自动进行制动以确保汽车安全行驶,但是由于此制动器使用弹簧进行制动,对于那些常常使用的汽车弹簧会由于长期受到疲劳载荷,对弹簧的刚度、抗疲劳强度都必须很高。 多功能湿式盘式制动器是结合了以上两种湿式制动器的特点,它在结构上运用了两个活塞,两种制动方式。行车制动与停车制动分别有两个不同油压的油路操纵,行车制动力距是通过压力油作用在行车制动器的活塞上来产生的,当行车制动器的活塞腔内注入压力油时,活塞会推动动压板使摩擦片压紧产生摩擦力,此时摩擦力形成阻力矩使车轮制动;解除行车制动时则需要把压力油卸掉,行车制动器的活 塞在弹簧恢复作用下离开动压板从而使摩擦片松开,使得摩擦阻力消除,是汽车解除制动。停车制动力由压缩弹簧产生,行车时,驻车活塞腔内进入压力油并且达到一定值时压力油作用在活塞上使它离开压板并且压缩弹簧,使汽车处于非停车制动状态,摩擦片的脱离和压紧仅与行车制动器活塞的动作有关,停车制动或者发动机出现故障时,压力油卸掉,弹簧在弹力的作用下推动活塞进而推动压板,是摩擦片压紧从而产生摩擦力,并且形成摩擦阻力使车轮制动,而且在制动过程中摩擦片始终浸在液压油中会使制动平稳,磨损大大减少,使的使用寿命增加。 湿式多盘 失压制动器是一种安全型湿式多盘制动器 ,它除了具有普通型湿式多盘制动器的特点外 ,还可以使液压系统大大简化 , 不需要第 2 制动系统。工作制动、停车制动都由此制动器完成,无需另加停车制动器 , 给总体布置带来方便。所以在矿井下的无轨辅助运输车辆的制动器采用此制动器。 6 第 2 章 制动器理论分析 计原始参数 动器在额定载荷下制动时制动初速度 0km/h,制动距离小于等于 8m。 载荷在规定坡道 16车最大装载质量 4000车整备质量 3000 作制动的最大静态制动力应大于整车的最大质量的50%。 车制动应在车辆运行和动力停止运行时均起作用。停车制动装置要保证车辆在规定的坡道上承载 最大载荷,在最大为 16 车制动性能 汽车制动性能好坏,是安全行车最重要的因素之一,因此也是汽车检测诊断的重点。汽车具有良好的制动性能,遇到紧急情况,可以化险为夷;在正常行驶时,可以提高平均行驶速度,从而提高运输生产效率。 汽车制动性能通常是由制动效能、制动效能恒定 性和制动时汽车方向稳定性这三个方面来评价的。 制动效能是指汽车迅速降低行驶速度直至停车的能力,是制动性能最基本的评价指标。它是由制动力、制动减速度、制动距离、和制动时间来评定;制动距离是指车辆在规定的初速度下急踩制动时,从脚接触制动踏板 (或手触动制动手柄 )时起至车辆停住时止,车辆驶过的距离。制动距离与踏板力以及地面的附着情况有关;制动距离越短性能越好;制动减速度反映了制动时汽车速度降低的速率,与地面制动力与制动器制动力有关,制动减速度越小性能越好;制动时间是制动过程所经历的时间,时间越短性能越好。 制动效能 恒定性是指制动器的抗热衰退性和抗水衰退性;抗热衰退性能是防止车辆高速制动、短时间重复制动或下长坡连续制动时,制动器温度上升,摩擦力矩显著下降这些现象。水衰退性是指当车辆涉水后,制动器因为进水使其短时间内制动效能 7 降低这种现象,这是由于制动器进水后摩擦系数下降,使其制动效能降低,不过由于制动器工作时会散热,就会使水迅速蒸发,使得制动效能恢复。 制动时汽车方向稳定性是指制动时汽车按给定轨迹的行驶能力,即防止汽车制动时跑偏、侧滑和失去转向能力。但是因为设计车速要求为 20km/h,一般不会发生此类现象,根据设计原则 故不作参考。 动时详细分析 动时受力分析 图 2 受力分析 车轮制动器的摩擦力矩( N m) 地面制动力( N) F 车轮对地面的作用力( N) r 车轮半径( m) 地面对车轮的支持力( N) 车轴对车轮的作用力( N) 说明:前桥和后桥载荷分配时 1:1。 根据图 2 F 和以有: /xb T r 。 面制动力 地面制动力是使汽车制动减速行驶的外力,它取决于: 8 动盘的摩擦力矩 附着力。附着力的极限值有取决于摩擦系数f。 制动时 xb 有制动时 xb 制动器制动力制动器制动力是指在轮胎周围壳服制动器摩擦力矩所需要的力;即 / r。 影响制动器的制动力的因素是地面制动力和制动器结构参数决定;它取决于制动器结构,而制动器的摩擦副的摩察系数与车轮半径有关,并与制动器踏板力 制动器的液压或气压成正比。 对于地面制动 力动器制动力面附着力 1汽车制动车轮滚动时:地面制动力制动器制动力 2车轮抱死拖滑是:地面制动力且小于地面附着力 即:f F/xb u T r所以地面制动力动器制动力面附着力 图 2图可知又受附着条件限制,只有当汽车内具有足够的制动气制动力,同时地面又能提供较大的附着力时才能获得足够的地面制动力。 9 着 系数 f 附着系数是指轮胎与地面的摩擦系数,一般用平均附着系数 f ,峰值附着系数动附着系数水平干硬路面上的平均附着系数见下表: 表 2青混凝路面 平均附着系数 f 峰值附着系 数 着系数高的路面,车子不容易打滑,行驶安全;附着系数低的路面,车子容易打滑,比如雪地,冰面等等。附着系数取决于道路的材料,路面状况,花纹材料,轮胎结构以及车辆运动速度等。 动车辆制动效能 1 制动减速度 j : 在不同路面上制动时,地面制动力有所不同,但 考虑到最大附着力时地面制动力 xb f G (水平路面上 ) ( 2 G ( 2 G 重力( N) g 重力加速度 制动减速度 j 的极值 : m a x / m f g 一般情况下车轮不抱死制动,所以 : f g2 制动距离 S( 8S ): 2 02 2 0m a +3 . 6 2 5 vS t t ( 2 2 2 2=+t t t ( 2 0v制动初速度 20km/h 10 2t 消除制动器间隙所用时间( s) 2t 制动力增长过程所用时间( s) 大制动减速度 (m/可见决定制动器距离的主要因素是:制动器起作用的时间和最大制动减速度。 动器制动力的比例关系 2F,如图所示: 图 2以1和力矩的平衡方程式: 1 2 2() Z g Z F L F h G a F L m h G (2以2和力矩的平衡方程式: 21() F L m h G (2联立( 2( 2到 1 =d g d t(2 11 2 =d g d t(2考虑到极限情况(前后轮抱死制动): G 此时:m dv ( 2 把( 2入( 2( 2到: 12= b + h= - ( 2 此时制动器制动力 F = 112212 G 12 第 3 章 湿式多盘式制动器的计算 计原则 动器在额定载荷下制动时制动初速度 0km/h,制动距离小于等于 8m。 载荷在规定坡道 16车最大装载质量 4000车整备质量 3000载荷为 7000 车辆减速及至停止行驶的制动情况),工作制动的最大静态制动大于 50%整车的最大质量。 车辆在平路或坡道上静止不动的制动情况),停车制动应在车辆运行和停止运行时都起作用,坡度为 160坡道上可以保持静止状况。 车辆在紧急状况下迅速停止行驶的制动情况)。 径为 车制动力矩计算 动减速度的计算 222201 20= / 2 8 / = 1 . 9 3 /2 3 . 6vj m s m (3 表 3动类型延迟时间的选取 制动类型 时间2压盘式制动 片制动 13 气压制动 式制动 取弹簧制动由表( 3延迟时间为 到: 22220202 0 2 0= / 2 8 0 . 5 / 2 . 9 6 /2 3 . 6 3 . 6vj m s m sS v t (3此时因制动延迟运行的制动距离2 2202 0 022 0 2 0= 0 . 5 + / 2 2 . 9 6 7 . 9 82 3 . 6 3 . 6vS v t m (3由( 3( 3最大制动减速度 2m a x 1 2= , 2 . 9 6 /m a xj j j m s (3车所需的最大制动力矩1B S j r 整车工作质量( 轮胎半径( m) j 最大制动减速度 (m/所以: 1 = 7 0 0 0 2 0 9 1 0 7 5 3 . 6 8B S j r N m N m ( 3 60的坡道上驻车制动计算整车制动力矩202 1 . 5 s i n 1 6 4 4 4 6 . 1 7B S j r N m N m (3选取最大整车制动力矩 m a x 1 2 m a x= , = 1 0 7 5 3 . 6 8 M N m ( 3 14 考虑一定的制动扭矩设备,储备系数为 得知整车最大制动力矩 4m a x m a 3 1 . 3 9 8 1 0 N m ( 3 按照制动时载荷分配可知制动前后桥所需制动力矩为: 3m a x= = 5 0 % = 6 . 9 9 1 0 M N m前 桥 后 桥 ( 3 后桥制动器的制动力1u BM f F n k R ( 3 f 摩擦系数 n 摩擦副个数 4 14 k 折减系数 擦副等效作用半径( 332223r (3其中 R 摩擦片的外半径 200R r 摩擦片的内半径 164r 式 3 1 8 2 m m 表 3-1 n 2 4 6 8 10 12 k 摩擦副个数 8,折减系数 15 根据式( 3得: 11 f n k R (3把( 3 k 、 f 、 n 、23得: 1 52468簧的计算(后制动器) 簧的选取 矩形弹簧的特点: 特性呈线性,刚度稳定,结构简单。 普通弹簧的特点:虽然行程够,但是力不足。 碟形弹簧的特点: 1. 碟形弹簧在较小的空间内承受极大的载荷。与其他类型的弹簧比较,碟形弹簧单位体积的变形量较大,具有良好的缓冲吸震能力,特别是采用叠合组合时,由于表面摩擦阻力作用,吸收冲击和消散能量的作用更显著。 2. 碟形弹簧具有变刚度特性。改变碟片内截锥高度与碟片厚度的比值,可以得到不同的弹簧特性曲线,可为直线型、渐增型、渐减型或者是他们的组合形式。此外还可以通过由不同厚度碟片组合或由不同片数叠合碟片的不同组合方式得到变刚度特 性。 3. 碟形弹簧由于改变碟片数量或碟片的组合形式,可以得到不同的承载能力和特性曲线,因此每种尺寸的碟片,可以适应很广泛的使用范围,这就使备件的准备和管理都比较容易。 4. 在承受很大载荷的组合弹簧中,每个碟片的尺寸不大,有利于制造和热处理。当一些碟片损坏时,只需个别更换,因而有利于维护和修理。 5. 正确设计、制造的碟形弹簧,具有很长的使用寿命。 6. 由于碟形弹簧是环形的,力是同心方式集中传递的。 设计的制动器属于失效安全性湿式多盘式制动器制动器,它是通过弹簧来只制动的,所以需要的弹簧而且在强度、变形 力及寿命都有很高的要求,结合以上三种弹簧的特性,碟形弹簧最符合设计要求。 16 形弹簧种类 碟簧的设计主要考虑的是碟簧的组数和它的组合型式。 碟形弹簧有不同类型的组合型式,常见的有叠合、对合、复合这三种型式: 规格的碟簧组成。如下图: 图 3由 下图: 图 3复合组合:有叠合与对合组成。如下图: 图 3 制动器内碟簧运动的规律 栓给碟簧施加压力, 使其压缩然后达到制动,一旦车辆发动,液压系统油压达到一定值,会再次压缩碟簧,最终解除制动。所以说从开始制动到接触制动碟簧会压缩两次: 第一次压缩到1二次压缩到2下图所示: 17 图 3平压时0/ 在121 2 00 . 7 5f f f h (最大变形 ) ( 3 2轴向尺寸:一组碟簧安装时,轴向尺寸受限制,自由高度小于某一轴向尺寸安装高度。 碟簧自由高度 +碟簧螺栓头部高度 +垫片高度 =轴向高度。 碟簧的外径 簧方案的选取 在此设计中需要碟簧为复合类型,下表为设计的两种方案的预选参数: 表 3方案 摩擦副 n 碟簧组组数 m 摩擦片间隙 一 8 10 8 14 案一的计算: 8n ,碟簧组组数 =10m ,钢片粉片间隙值 取 一组复合碟簧所需产生的制动力为1 52468 5 2 4 6 . 81 0 1 0F N N (3需要叠合两片 ,所以单片碟簧所需的制动力 5 2 4 6 = 2 6 2 322F N N (3考虑磨损量取1F 2800N,根据碟簧变形量和弹力的线性关系取 A 系列弹簧,选碟簧规格为 下表所示: 18 表 3, 01 8 ; 0 . 4 ; 2 0 6 0 0 0 ; 0 . 3 M P D 碟簧外径( d 碟簧内径( t 碟簧厚度( 0h碟簧压平时变形量计算值( 0H碟簧的自由高度( P 单个碟簧的载荷( N) f 单片碟簧变形量( 设对合数 y。2 3600因 0 呈线性关系,所以有式( 3在,可知1F、2f: 122 8 0 0 3 6 0 0 3 9 0 0= 0 f f f (3得: 1 3打开摩擦片所需间隙为 : 8 0 (3 21 1 f y (3将( 3入上式,求得: ,所以取 15对合 0 1ZH y H x t 1 5 2 . 4 5 + 2 1 1 . 7 5 6 3 m (3类别 D/mm d/mm t/h /0/ / 900 19 6 3 m m + 1 6 m m + 3 m m = 8 2 m m ( 3 案二的计算: 8n ,碟簧组组数 =14m ,钢片粉片间隙值 取 一组复合碟簧所需产生的制动力为1 52468 3 7 4 7 . 71 4 1 4F N N (3需要叠合两片 ,所以单 片碟簧所需的制动力 : 3 7 4 7 . 7= = 1 8 7 322F N N (3考虑磨损量取1F 2100N,根据碟簧变形量和弹力的线性关系取 A 系列弹簧,选碟簧规格 28,即 下表所示 : 表 3列 A, 01 8 ; 0 . 4 ; 2 0 6 0 0 0 ; 0 . 3 M P 设对合数 y。2 2850因 0 呈线性关系,所以有式( 3在,可知112 10 0 2 8 5 0= 0 (3得: 1 3打开摩擦片所需间隙为 : 8 0 (3 21 2 f y (3类别 D/mm d/mm t/h /0/ / 28 850 20 将( 3入上式,求得 ,所以取 19 对合 0 1ZH y H x t 1 9 2 . 1 5 + 2 1 1 . 5 7 0 m (3 7 0 m m + 1 6 m m + 3 m m = 8 9 m m ( 3 28 碟簧方案的校核 方案一的校核 : 有一个由 10对合、两叠合碟簧 B/T 1972预加载荷1 2800工作载荷2 3600 碟簧负荷: 4 22 00442214 112t f f D t t t t t 当0即碟簧压平时,上式化简为: 3 20422141 D(3式中 F 单个碟簧的载荷 (N) 平时碟形弹簧载荷计算值( N) t 碟簧厚度 (D 碟簧外径( f 单片碟簧的变形量( 0h碟簧压平时变形量的计算值( E 弹性模量( u 泊松比 1 2 3 4K K K K、 、 、折减系数 1 2 3 4K K K K、 、 、系数得值可根据 下表中查取: 21 表 3=D/d K :对于无支撑面的碟簧4 1K 由表( 3表( 3式( 3: 5038 因此 : 122 8 0 0 3 6 0 00 . 5 4 ; 0 . 7 15 0 3 8 5 0 3 8 (3通过查看下图单片弹簧特性曲线: 00 图 3不 同 004 算的碟簧特性曲线 22 由上图 3照 0 =查出 : 1200= 0 . 4 5 0 . 7 0 。 故:120 . 3 7 9 , 0 . 5 0f m m f m m通过查看下图找到疲劳破坏关键部位: 图 3 碟簧疲劳破坏关键部位 由上图,按 0 = 0 . 4 = 1 9 3h C = .,可得疲劳破坏关键点为点:如图 3 图 3 计算碟簧时的应力点示意图 点的应力是: 2 04 4 2 3221412hE t f K D t t t (3式中( 3: 23 01 2 3 4 m mD m mf m mh m K K 弹 性 模 量 泊 松 比 碟 簧 厚 度 碟 簧 外 径 单 片 碟 簧 变 形 量 碟 簧 压 平 时 变 形 量 的 计 算 值、 、 、 折 减 系 数由表 3 3 3 当110 . 3 7 9 m m 8 9 0 . 6 5f M P a 时 ,220 . 5 0 m m 1 2 2 3 . 0f M P a 时 , 则求出碟簧计算应力幅a: 21 1 2 2 3 . 0 8 9 0 . 6 5 3 3 2 . 3 5a M P a M P a 通过查看下图 3 图 3 t 弹簧的极限应力曲线 24 由上图 3在m i n 8 9 0 . 6 5r M P a 处时, 55 10N 疲劳强度上限应力为m a x 1240r M P a , 可求得疲劳强度应力幅为: m a x m i n 1 2 4 0 8 9 0 . 6 5 3 4 9 . 3 5r a r r M P a M P a M P a 因为a ,所以满足疲劳强度要求,所以此次方案满足设计要求。 方案二的校核 : 有一个由 14对合、两叠合碟簧 B/T 1972预加载荷1 2100工作载荷2 2800 碟簧负荷: 4 22 00442214 112t f f D t t t t t 当0即碟簧压平时,上式化简为: 3 20422141 D(3由表( 3表( 3式( 3: 3683 因此 : 122 1 0 0 2 8 0 00 . 5 7 ; 0 . 7 63 6 8 3 3 6 8 3 (3由图 3照 0 =查出: 1200= 0 . 5 4 0 . 7 4 。 故: 120 . 3 5 , 0 . 4 8f m m f m m由图 3 0 = 0 . 4 = 1h C = .,可得疲劳破坏关键点为点:如图 3 25 点的应力是: 2 04 4 2 3221412hE t f K D t t t (3由表 3 3 3 当110 . 3 5 m m 8 6 5 . 4f M P a时 ,220 . 4 8 m m 1 3 5 2f M P a 时 , 则求出碟簧计算应力幅a: 21 1 3 5 2 . 0 8 6 5 . 4 4 8 6 . 6a M P a M P a 通过查看图 3在m i n 8 6 5 . 4r M P a 处时, 55 10N 疲劳强度上限应力为m a x 1240r M P a , 可求得疲劳强度应力幅为: m a x m i n 1 2 4 0 8 6 5 . 4 3 7 4 . 6r a r r M P a M P a M P a 因为a ,所以不满足疲劳强度要求,所以此次方案不满足设计要求。 从这两方案中得知第一种方案符合设计要求。 簧组设计方案有关数据 通过计算可知方案一符合设计要求,所以 碟簧组所需设计的有关参数如下 : B/T 1972叠合两片对合 15片 1f: 1 得 : 1 26 2623 1 2800碟簧加大预加载荷时的变形量1f: 1 2 36002 11 0 . 3 8 0 . 3 6 1 5 0 . 3f f y m m m m f : 12 0 . 4 9 0 . 3 8 0 . 1 1f f f m m m m f : 1 5 1 . 6 5f f m m 疲劳破坏关键点在点,校核通过。 63ZH 1 5 = 5 7 . 3 f m m 2 1 5 5 5 . 6 5 f m m 27 : 2(3式中: y 复合碟簧对合数; x 复合碟簧叠合数; S 摩擦片面积; 22 24 2 6 8 4 . 422m m (3将式( 3入( 3: m : 10m 点应力为 : 8 9 0 M P a 点应力为 : 1223M m a x m i n 3 3 2 . 3 5a M P a m a x m i n = 3 4 9 . 3 5r a r r M P a 因 a ,故可以满足疲劳强度的要求。 即碟簧组如图 3 28 图 3簧组合 29 第 4 章 制动器设计方案 动器总体结构: 如下图, 4有两部分 组成,一个是高压油腔,另外一个是润滑油腔,它主要是由静壳 4、活塞 6、静压盘 7、钢片 8、粉片 9、动壳10、动压盘 11、碟簧组 14这些主要零件构成的,工作原理是通过弹簧制动,液压释放;通过几组碟形弹簧组 14压缩作用到压盘,使动压盘 11移动,将弹簧力传递到摩擦片上,使得粉片 8和钢片 9压紧,就会使车辆产生制动;当活塞腔充液后,活塞 6就会产生右移会再次压缩碟形弹簧组 14,这时钢片 8 和粉片 9 就会逐渐脱离接触,时车辆解除制动。 图 4计的制动器整体结构方案 11 动压盘 12后轮毂螺栓 13螺栓 部零件设计方案 擦片选取及布置 用于制动器的摩擦材料,通常在很高的剪力和温度条件下工作,要求这类材料能吸收动能,并将动能转化热能散发到空气中。其工作温度和温升速度是影响性能的主要因素,制动器工作时,吸收的能量越大,完成制动时间越短,则温升越高,摩擦材 30 料的工作温度如超过许用工作温度,性能会显著 恶化,对摩擦材料的基本性能如下: 有良好的恢复性能; 许压强大,又不损伤对偶材料; 湿、抗腐蚀及抗胶合性能; 在这次设计的摩擦片材料铜基粉末,许用压强可达 通过计算可知摩擦片共有 7个,粉片 9和钢片 8是相间排列的,钢片要比粉片多一个,所以粉片需要 3个,钢片需要 4个,它们的排列结构如下图所示: 图 4 动壳零件的设计 钢片 8 外花键应该和动壳 10 的内花键相配合 ,在制动器安置在车辆上需要用后轮毂螺栓 12 把动壳 10 和轮毂相连接,动壳 10 和后轮毂螺栓 12 时采用过盈配合 0 和轮毂配合安装 O 型圈 16,所以在动壳 10 上需要设计 O 型圈沟槽,通过查手册可以知其所选 O 型圈 16 规格和其相应的沟槽尺寸,并且在动壳 10 和静壳 4 接触处也要安装浮封环 5 进行密封,通过相关资料找出所需那种型号以及其沟槽尺寸;其结构如下图所示: 图 4壳结构 31 塞零件的设计 而粉片 9的内花键应该和活塞 6的外花键相配合,活塞花键边考虑到加工应该留有退刀槽,活塞 头部需要安装在静壳 4的活塞腔内,但是由于活塞 6和静壳 4有相对运动,所以活塞 6 头部和静壳 4 要留有一定间隙。而且碟簧组 14 需要安装在活塞 6的弹簧腔内,为防止油从活塞 6与静壳 4相接处漏出,所以在活塞需要安装 ,就要设计出其所需的沟槽尺寸,通过查手设计册即可得出它们的尺寸;其结构如下图所示:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论