《红外传感器》word版.doc_第1页
《红外传感器》word版.doc_第2页
《红外传感器》word版.doc_第3页
《红外传感器》word版.doc_第4页
《红外传感器》word版.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

红外传感器红外线红外光是太阳光谱的一部分,其波长范围及在电磁波谱中的位置如图所示。红外光的最大特点就是具有光热效应,辐射热量,它是光谱中最大光热效应区。红外光一种不可见光,与所有电磁波一样,具有反射、折射、散射、干涉、吸收等性质。红外光在真空中的传播速度为3108m/s。红外光在介质中传播会产生衰减,在金属中传播衰减很大,但红外辐射能透过大部分半导体和一些塑料,大部分液体对红外辐射吸收非常大。不同的气体对其吸收程度各不相同,大气层对不同波长的红外光存在不同的吸收带。研究分析表明,对于波长为15m、814m区域的红外光具有比较大的透明度。即这些波长的红外光能较好地穿透大气层。自然界中任何物体,只要其温度在绝对零度之上,都能产生红外光辐射。红外光的光热效应对不同的物体是各不相同的,热能强度也不一样。例如,黑体(能全部吸收投射到其表面的红外辐射的物体)、镜体(能全部反射红外辐射的物体)、透明体(能全部穿透红外辐射的物体)和灰体(能部分反射或吸收红外辐射的物体)将产生不同的光热效应。严格来讲,自然界并不存在黑体、镜体和透明体,而绝大部分物体都属于灰体。上述这些特性就是把红外光辐射技术用于卫星遥感遥测、红外跟踪等军事和科学研究项目的重要理论依据。红外辐射的基本定律(1)基尔霍夫定律:在一定温度下,地物单位面积上的辐射通量W和吸收率之比,对于任何物体都是一个常数,并等于该温度下同面积黑体辐射通量W黑。在给定的温度下,物体的发射率=吸收率(同一波段);吸收率越大,发射率也越大。地物的热辐射强度与温度的四次方成正比,所以,地物微小的温度差异就会引起红外辐射能量的明显变化。这种特征构成了红外遥感的理论基础。(2)玻耳兹曼定律Stefan-Boltzmanns law即黑体总辐射通量随温度的增加而迅速增加,它与温度的四次方成正比。因此,温度的微小变化,就会引起辐射通量密度很大的变化。是红外装置测定温度的理论基础。(3)维恩位移定律:Wiens displacement law随着温度的升高,辐射最大值对应的峰值波长向短波方向移动。红外传感器工作原理红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。一个典型的传感器系统各部分的工作原理如图所示;图中的实体分别是:红外传感器工作原理(1)待侧目标。根据待侧目标的红外辐射特性可进行红外系统的设定。(2)大气衰减。待测目标的红外辐射通过地球大气层时,由于气体分子和各种气体以及各种溶胶粒的散射和吸收,将使得红外源发出的红外辐射发生衰减。(3)光学接收器。它接收目标的部分红外辐射并传输给红外传感器。相当于雷达天线,常用是物镜。(4)辐射调制器。对来自待测目标的辐射调制成交变的辐射光,提供目标方位信息,并可滤除大面积的干扰信号。又称调制盘和斩波器,它具有多种结构。(5)红外探测器。这是红外系统的核心。它是利用红外辐射与物质相互作用所呈现出来的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现出的电学效应。此类探测器可分为光子探测器和热敏感探测器两大类型。(6)探测器制冷器。由于某些探测器必须要在低温下工作,所以相应的系统必须有制冷设备。经过制冷,设备可以缩短响应时间,提高探测灵敏度。(7)信号处理系统。将探测的信号进行放大、滤波,并从这些信号中提取出信息。然后将此类信息转化成为所需要的格式,最后输送到控制设备或者显示器中。(8)显示设备。这是红外设备的终端设备。常用的显示器有示波器、显像管、红外感光材料、指示仪器和记录仪等。依照上面的流程,红外系统就可以完成相应的物理量的测量。红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。红外探测器(传感器)能将红外辐射量变化转换成电量变换的装置称为红外探测器(红外传感器),红外探测器是根据热电效应和光子效应制成的。前者为热敏探测器,后者为光子探测器。从理论上讲,热探测器对入射的各种波长的辐射能量全部吸收,它是一种对红外光波无选择的红外传感器。光子探测器常用的光子效应有外光电效应、内光电效应(光生伏特效应、光电导效应)和光电磁效应。(图为红外线光电传感器)热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。热敏探测器对红外辐射的响应时间比光电探测器的响应时间要长得多。前者的响应时间一般在ms以上,而后者只有ns量级。热探测器不需要冷却,光子探测器多数要冷却。1.红外探测器的基本参数(为了便于设计和选用)红外探测器主要技术参数有下列几项:(1)响应率所谓红外探测器的响应率就是其输出电压与输入的红外辐射功率之比式中r-响应率(V/W);U0-输出电压(V);P-红外辐射功率(W)。(2)响应波长范围红外探测器的响应率与入射辐射的波长有一定的关系,如右图所示。曲线为热敏探测器的特性。热敏红外探测器响应率r与波长无关。光电探测器的分谱响应如图中曲线所示。P对应响应峰值rP,rP/2于对应为截止波长c。(3)噪声等效功率(NEP)若投射到探测器上的红外辐射功率所产生的输出电压正好等于探测器本身的噪声电压,这个辐射功率就叫做噪声等效功率(NEP)。噪声等效功率是一个可测量的量。设入射辐射的功率为P,测得的输出电压为U0,然后除去辐射源,测得探测器的噪声电压为UN,则按比例计算,要使U0=UN,的辐射功率为反射式光学系统的红外探测器一般由四面玻璃反射镜组成,其表面镀金、铝和镍铬等红外波段反射率很高的材料构成反射式光学系统。为了减小像差或使用上的方便,常另加一片次镜,使目标辐射经两次反射聚焦到敏感元件上,敏感元件与透镜组一体前置放大器接收热电转换、后的电信号,并对其进行放大。透射式红外探测器的部件用红外光学材料做成,不同的红外光波长应选用不同的光学材料。例如,在测量700以上的高温时(波长多为7503000nm范围内近红外光),一般用光学玻璃和石英等材料作透镜材料;测量100700范围的温度时(多为35m的中红外光),多用氟化镁、氧化镁等热敏材料;测量100以下的温度(波长为514m的中远红外光),多采用锗、硅、硫化锌等热做材料。除近红外光外,获取透射红外光的光学材料一般比较困难,反射式光学系统可避免这一困难。红外光的最大特点就是具有光热效应,辐射热量,它是光谱中最大光热效应区。红外光一种不可见光,与所有电磁波一样,具有反射、折射、散射、干涉、吸收等性质。红外光在真空中的传播速度为3108m/s。红外光在介质中传播会产生衰减,在金属中传播衰减很大,但红外辐射能透过大部分半导体和一些塑料,大部分液体对红外辐射吸收非常大。不同的气体对其吸收程度各不相同,大气层对不同波长的红外光存在不同的吸收带。研究分析表明,对于波长为15m、814m区域的红外光具有比较大的透明度。即这些波长的红外光能较好地穿透大气层。自然界中任何物体,只要其温度在绝对零度之上,都能产生红外光辐射。红外光的光热效应对不同的物体是各不相同的,热能强度也不一样。例如,黑体(能全部吸收投射到其表面的红外辐射的物体)、镜体(能全部反射红外辐射的物体)、透明体(能全部穿透红外辐射的物体)和灰体(能部分反射或吸收红外辐射的物体)将产生不同的光热效应。严格来讲,自然界并不存在黑体、镜体和透明体,而绝大部分物体都属于灰体。上述这些特性就是把红外光辐射技术用于卫星遥感遥测、红外跟踪等军事和科学研究项目的重要理论依据。红外探测器的应用举例红外探测器应用可以用于非接触式的温度测量,气体成分分析,无损探伤,热像检测,红外遥感以及军事目标的侦察、搜索、跟踪和通信等。红外传感器的应用前景随着现代科学技术的发展,将会更加广阔。1.红外气体分析仪红外线气体分析仪,是利用红外线进行气体分析它基于待分析组分的浓度不同,吸收的辐射能不同,剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号这样,就可间接测量出待分析组分的浓度根据红外辐射在气体中的吸收带的不同,可以对气体成分进行分析。例如,二氧化碳对于波长为2.7m、4.33m和14.5m红外光吸收相当强烈,并且吸收谱相当的宽,即存在吸收带。根据实验分析,只有4.33m吸收带不受大气中其他成分影响,因此可以利用这个吸收带来判别大气中的CO2的含量。二氧化碳对红外光的透射光谱如右图所示。二氧化碳红外气体分析仪由气体(含CO2)的样品室、参比室(无CO2)、斩光调制器、反射镜系统、滤光片、红外检测器和选频放大器等组成。测量时,使待测气体连续流过样品室,参比室里充满不含CO2的气体(或CO2含量已知的气体)。红外光源发射的红外光分成两束光经反射镜反射到样品室和参比室,经反射镜系统,这两束光可以通过中心波长为4.33m的红外光滤色片投射到红外敏感元件上。由于斩光调制器的作用,敏感元件交替地接收通过样品室和参比室的辐射。若样品室和参比室均无CO2气体,只要两束辐射完全相等,那么敏感元件所接收到的是一个通量恒定不变的辐射,因此,敏感元件只有直流响应,交流选频放大器输出为零。若进入样品室的气体中含有CO2气体,对4.33m的辐射就有吸收,那么两束辐射的通量不等,则敏感元件所接收到的就是交变辐射,这时选频放大器输出不为零。经过标定后,就可以从输出信号的大小来推测CO2的含量。图为操作简便,手握式二氧化碳及温度检测仪,由于采用了专利双光束红外传感器技术,该检测仪能保证稳定而精确的测量,该仪器具有0-4伏的电压输出,适合于长时间的检测和记录环境检测,可以和电脑联机,便于数据分析。2.红外无损探伤仪红外无损探伤仪可以用来检查部件内部缺陷,对部件结构无任何损伤。例如,检查两块金届板的焊接质量,利用红外辐射探伤仪能十分方便地检查漏焊或缺焊;为了检测金属材料的内部裂缝,也可利用红外探伤仪。红外无损探伤仪的工作原理如下图所示。将红外辐射对金属板进行均匀照射,利用金属对红外辐射的吸收与缝隙(含有某种气体或真空)对红外辐射的吸收所存在的差异,可以探测出金属断裂空隙。当红外辐射扫描器连续发射一定波长的红外光通过金属板时,在金属板另一侧的红外接收器也同时连续接收到经过金属板衰减的红外光;如果金属板内部无断裂,辐射扫描器在扫描过程中,红外接收器收到的是等量的红外辐射;如果金属板内部存在断裂,红外接收器在辐射扫描器在扫描到断裂处时所接收到的红外辐射值与其他地方不一致,利用图像处形技术,就可以显示出金属板内部缺陷的形状。3.辐射温度计根据维恩位移定律,物体峰值辐射波长m与物体的自身的绝对温度T成反比。只要测量出辐射体(源)的峰值辐射波长m,即可推测出辐射体的温度。这种测温手段的测温范围可达-1703200;响应速度可达几个微秒;可以实现非接触测量,不会破坏温度场,还可以测量几百到上千Km之外物体的温度。(图为一红外测温仪)4.热释电红外线传感器热释电红外传感器主要用来检测红外线的增量,对于与背景温度高出几度的温差,将会作出迅速的响应因此,热释电红外传感器可以用来检测运动的人体当人体进入该传感器的有效视野范围时,传感器的输出端就会立即输出一个高电平,让执行器件作出反应。新型的热释电红外传感器AMN1它的最主要特征是:体积变得非常小,大约只有同类传感器的1/10,其中多棱透镜为原来的1/5因此,适合安装于极小的装置中;它的内部除了有一个高灵敏度四元件热释电红外敏感元件外,还将信号放大器!运放比较器!稳压电路和输出电路集成在一块芯片IC1上AMN1只有三个管脚,分别是+Vcc!GND和OUT(见图1)这使得外接电路极其简单,而且使用非常方便;加上特别的封装技术,使AMN1的抗干扰能力非常强如图2所示,IC2为74LS04芯片,T为光控晶闸管,RL1为声光报警系统,RL2为录像监视系统当有运动人体进入AMN1的有效视野范围时,运动传感器(MotionSensor)AMN1的OUT端将输出高电平5V;经过电阻R1!R2的分压,在IC2a门的输入端产生在一个3.2V的高电平,b门的输出端电平也为3.2V,这样就使得光控晶闸管T导通导通时T的压降可以忽略,此时,串联在线路中的声光报警系统RL1开始工作,同时负载RL2录像监视系统也过行工作状态,将进入视野的人以电磁信号的形式记录下来等人离开视野一定时间后,OUT端输出低电平,报警监视装置恢复到关停状态热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件,现在已得到越来越广泛的应用,从原理上分析,它主要有主动式和被动式两类。1)热释电人体红外线传感器的基本结构和原理目前,市场上出现的热释电人体红外线传感器主要有上海产的SD02、PH5324,德国产的LH1954、LH1958,美国HAMAMATSU公司产P2288,日本NIPPONCERAMIC公司的SCA02-1、RS02D等。虽然它们的型号不一样,但其结构、外型和电参数大致相同,大部分可以彼此互换使用。热释电人体红外线传感器(以下简称:传感器)由敏感单元、阻抗变换器和滤光窗等三大部分组成。图9.2.3为P2288、SD02、SCA02-1的外形图。图9.2.3a为它们的顶视图,其中较大的矩形部分为滤光窗,两个虚线框矩形为敏感单元,面积约21mm2,间距1mm。可以用于以下各种实用电路中。1.有电,危险安全警示电路用于有电的场合,当有人进入这些场合时,通过发出语音和声光提醒人们注意安全。2.自动门主要用于银行、宾馆。当有人来到时,大门自动打开,;人离开后又自动关闭。3.红外线防盗报警器用于银行、办公楼、家庭等场合的防盗报警。4.高速公路车辆车流计数器5.自动开、关的照明灯,人体接近自动开关等。5.红外温度检测系统自然界一切温度高于绝对零度(-273.15C)的物体,由于分子的热运动,都在不停地向周围空间辐射包括红外波段在内的电磁波,其辐射能量密度与物体本身的温度关系符合普朗克(Plank)定律。人体主要辐射波长在910m的红外线,通过对人体自身辐射红外能量的测量,便能准确地测定人体表面温度。由于该波长范围内的光线不被空气所吸收,因而可利用人体辐射的红外能量精确地测量人体表面温度。人体的红外辐射特性与它的表面温度有着十分密切的关系,因此,通过对人体自身辐射的红外能量的测量,便能准确地测定人体表面温度。红外温度测量技术的最大优点是测试速度快,1秒钟以内可测试完毕。由于它只接收人体对外发射的红外辐射,没有任何其它物理和化学因素作用于人体,所以对人体无任何害处。TH-IR101F红外测温仪此设备由红外传感器和显示报警系统两部分组成,它们之间通过专用的五芯电缆连接。安装时将红外传感器用支架固定在通道旁边或大门旁边等地方,使得被测人与红外传感器之间的距离相距35CM。在其旁边摆放一张桌子,放置显示报警系统。只要被测人在指定位置站立1秒钟以上,红外快速检测仪就可准确测量出旅客体温。一旦受测者体温超过38C,测温仪的红灯就会闪亮,同时发出蜂鸣声提醒检查人员。红外温度快速检测仪为在人流量较大的公共场所降低非典的扩散和传播提供快速、非接触测量手段,可广泛用于机场、海关、车站、宾馆、商场、影院、写字楼、学校等人流量较大的公共场所,对体温超过38C的人员进行有效筛选。具有环境温度补偿功能:红外温度快速检测仪测量的是额头表面的温度,体表温度不仅跟人体温度相关,而且受环境温度、湿度、气流、体表下血液循环和导热状况、以及表面换热条件的影响,致使现有的各种红外测温仪在测量人体温度时出现较大的测量误差。使用特点:非接触测量,不接触人体,避免交叉感染,无需卫生消毒。检测速度快,一般短于1秒钟。体温超过38C自动报警,检测仪的红灯就会闪亮,同时发出蜂鸣声提醒检查人员。报警温度自行设置,如37.5C。环境温度自动补偿。无机械运动部件,使用寿命长。6.夜视仪红外夜视仪是利用光电转换技术的军用夜视仪器。它分为主动式和被动式两种:前者用红外探照灯照射目标,接收反射的红外辐射形成图像;红外夜视仪不是利用目标自身发射的红外辐射来获得目标的信息,而是靠红外探照灯发射的红外辐射去照明目标,并接收目标反射的红外线来侦察和显示目标,所以,又被称为主动式红外夜视仪。后者不发射红外线,依靠目标自身的红外辐射形成热图像,故称为热像仪。热像仪又被称作被动式红外夜视仪,它本身不发出红外辐射,只接收目标的红外辐射,并转换成人眼可见的红外图象,图象反映了目标各部分的红外辐射强度(图)(一种便携主动式红外夜视仪)夜间可见光很微弱,但人眼看不见的红外线却很丰富

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论