余弦定理证明 (精选多篇)_第1页
余弦定理证明 (精选多篇)_第2页
余弦定理证明 (精选多篇)_第3页
余弦定理证明 (精选多篇)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-精选财经经济类资料- 余弦定理证明(精选多篇) 余弦定理证明在任意abc中,作adbc.c对边为c,b对边为b,a对边为a-bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c勾股定理可知:ac=ad+dcb=+b=sinb*c+a+cosb*c-2ac*cosbb=*c-2ac*cosb+ab=c+a-2ac*cosb所以,cosb=/2ac2如右图,在abc中,三内角a、b、c所对的边分别是a、b、c.以a为原点,ac所在的直线为x轴建立直角坐标系,于是c点坐标是,由三角函数的定义得b点坐标是.cb=.现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,dac=-bca=-c,根据三角函数的定义知d点坐标是,asin)即d点坐标是,ad=而ad=cb=asinc=csina-acosc=ccosa-b由得asina=csinc,同理可证asina=bsinb,asina=bsinb=csinc.由得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而由可得a2sin2c=c2sin2aa2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。3abc的三边分别为a,b,c,边bc,ca,ab上的中线分别为ma.mb,mc,应用余弦定理证明:mb=mc=ma=-ac*cosb)=由b=a+c-2ac*cosb得,4ac*cosb=2a+2c-2b,代入上述ma表达式:ma=同理可得:mb=mc=4ma=-ac*cosb)=由b=a+c-2ac*cosb得,4ac*cosb=2a+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论