初中一年级数学知识点总结.docx_第1页
初中一年级数学知识点总结.docx_第2页
初中一年级数学知识点总结.docx_第3页
初中一年级数学知识点总结.docx_第4页
初中一年级数学知识点总结.docx_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中一年级数学知识点总结初中一年级数学知识点总结 初中一年级数学知识点总结一 一、知识框架 二.知识概念 1.有理数: (1)凡能写成 形式的数,都是有理数.正整数、0、负 整数统称整数;正分数、负分数统称分数;整数和分数统称 有理数.注意:0 即不是正数,也不是负数;-a 不一定是负 数,+a 也不一定是正数;p 不是有理数; (2)有理数的分类: 2.数轴:数轴是规定了原点、正方向、单位长度的一 条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个 的相反数;0 的相反数还是 0; (2)相反数的和为 0 ? a+b=0 ? a、b 互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0 的绝对值是 0,负数的 绝对值是它的相反数;注意:绝对值的意义是数轴上表示某 数的点离开原点的距离; (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨 论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大; (2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负 数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的 两个数,右边的数总比左边的数大;(6)大数-小数 0,小 数-大数 6.互为倒数:乘积为 1 的两个数互为倒数;注 意:0 没有倒数;若 a0,那么 的倒数是 ;若 ab=1? a、b 互为倒数;若 ab=-1? a、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的 绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b) +c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的 相反数;即 a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式 都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab) c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒 数;注意:零不能做除数, . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意: 当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为 正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫 做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于 10 的数记成 a10n 的形 式,其中 a 是整数数位只有一位的数,这种记数法叫科学 记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位, 就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确 的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生 活和学习数轴的基础上,理解正负数、相反数、绝对值的 意义所在。重点利用有理数的运算法则解决实际问题. 体验数学发展的一个重要原因是生活实际的需要.激发 学生学习数学的兴趣,教师培养学生的观察、归纳与概括 的能力,使学生建立正确的数感和解决实际问题的能力。 教师在讲授本章内容时,应该多创设情境,充分体现学生 学习的主体性地位。 第二章 整式的加减 一.知识框架 二.知识概念 1.单项式:在代数式中,若只含有乘法(包括乘方)运 算。或虽含有除法运算,但除式中不含字母的一类代数式 叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数, 叫单项式的数字系数,简称单项式的系数;系数不为零时, 单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数 就是多项式的项数,每个单项式叫多项式的项;多项式里, 次数最高项的次数叫多项式的次数。 通过本章学习,应使学生达到以下学习目标: 1. 理解并掌握单项式、多项式、整式等概念,弄清它 们之间的区别与联系。 2. 理解同类项概念,掌握合并同类项的方法,掌握去 括号时符号的变化规律,能正确地进行同类项的合并和去 括号。在准确判断、正确合并同类项的基础上,进行整式 的加减运算。 3. 理解整式中的字母表示数,整式的加减运算建立在 数的运算基础上;理解合并同类项、去括号的依据是分配律;理 解数的运算律和运算性质在整式的加减运算中仍然成立。 4.能够分析实际问题中的数量关系,并用还有字母的 式子表示出来。 在本章学习中,教师可以通过让学生小组讨论、合作 学习等方式,经历概念的形成过程,初步培养学生观察、 分析、抽象、概括等思维能力和应用意识。 第三章 一元一次方程 一.知识框架 二.知识概念 1.一元一次方程:只含有一个未知数,并且未知数的 次数是 1,并且含未知数项的系数不是零的整式方程是一元 一次方程. 2.一元一次方程的标准形式: ax+b=0(x 是未知数, a、b 是已知数,且 a0). 3.一元一次方程解法的一般步骤: 整理方程 去 分母 去括号 移项 合并同类项 系 数化为 1 (检验方程的解). 4.列一元一次方程解应用题: (1)读题分析法: 多用于“和,差,倍,分问 题” 仔细读题,找出表示相等关系的关键字,例如:“大, 小,多,少,是,共,合,为,完成,增加,减少,配套- -” ,利用这些关键字列出文字等式,并且据题意设出未 知数,最后利用题目中的量与量的关系填入代数式,得到 方程. (2)画图分析法: 多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体 现,仔细读题,依照题意画出有关图形,使图形各部分具 有特定的含义,通过图形找相等关系是解决问题的关键, 从而取得布列方程的依据,最后利用量与量之间的关系(可 把未知数看做已知量),填入有关的代数式是获得方程的基 础. 11.列方程解应用题的常用公式: (1)行程问题: 距离=速度时间 ; (2)工程问题: 工作量=工效工时 ; (3)比率问题: 部分=全体比率 ; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆 流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价折 ,利润=售价- 成本, ; (6)周长、面积、体积问题:C 圆=2R,S 圆=R2,C 长方形=2(a+b),S 长方形=ab, C 正方形=4a, S 正方形=a2,S 环形=(R2-r2),V 长方体=abc ,V 正 方体=a3,V 圆柱=R2h ,V 圆锥= R2h. 本章内容是代数学的核心,也是所有代数方程的基础。 丰富多彩的问题情境和解决问题的快乐很容易激起学生对 数学的乐趣,所以要注意引导学生从身边的问题研究起, 进行有效的数学活动和合作交流,让学生在主动学习、探 究学习的过程中获得知识,提升能力,体会数学思想方法。 初中一年级数学知识点总结二 第一章 丰富的图形世界 1、几何图形 从实物中抽象出来的各种图形,包括立体图形和平面 图形。 立体图形:有些几何图形的各个部分不都在同一平面 内,它们是立体图形。 平面图形:有些几何图形的各个部分都在同一平面内, 它们是平面图形。 2、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本 的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 3、生活中的立体图形 圆柱 柱 生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、 正方体)、五棱柱、 (按名称分) 锥 圆锥 棱锥 4、棱柱及其有关概念: 棱:在棱柱中,任何相邻两个面的交线,都叫做棱。 侧棱:相邻两个侧面的交线叫做侧棱。 n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱, n 条侧棱;2n 个顶点。 5、正方体的平面展开图:11 种 6、截一个正方体:用一个平面去截一个正方体,截出 的面可能是三角形,四边形,五边形,六边形。 7、三视图 物体的三视图指主视图、俯视图、左视图。 主视图:从正面看到的图,叫做主视图。 左视图:从左面看到的图,叫做左视图。 俯视图:从上面看到的图,叫做俯视图。 8、多边形:由一些不在同一条直线上的线段依次首尾 相连组成的封闭平面图形,叫做多边形。 从一个 n 边形的同一个顶点出发,分别连接这个顶点 与其余各顶点,可以把这个 n 边形分割成(n-2)个三角形。 弧:圆上 A、B 两点之间的部分叫做弧。 扇形:由一条弧和经过这条弧的端点的两条半径所组 成的图形叫做扇形。 第二章 有理数及其运算 1、有理数的分类 正有理数 有理数 零 负有理数 或 整数 有理数 分数 2、相反数:只有符号不同的两个数叫做互为相反数, 零的相反数是零 3、数轴:规定了原点、正方向和单位长度的直线叫做 数轴(画数轴时,要注意上述规定的三要素缺一不可)。任 何一个有理数都可以用数轴上的一个点来表示。解题时要 真正掌握数形结合的思想,并能灵活运用。 4、倒数:如果 a 与 b 互为倒数,则有 ab=1,反之亦成 立。倒数等于本身的数是 1 和-1。零没有倒数。 5、绝对值:在数轴上,一个数所对应的点与原点的距 离,叫做该数的绝对值。(|a|0)。零的绝对值时它本身, 也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。 6、有理数比较大小:正数大于零,负数小于零,正数 大于一切负数;数轴上的两个点所表示的数,右边的总比左 边的大;两个负数,绝对值大的反而小。 7、有理数的运算 : (1)五种运算:加、减、乘、除、乘方 (2)有理数的运算顺序 先算乘方,再算乘除,最后算加减,如果有括号,就 先算括号里面的。 (3)运算律 加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分配律 第三章 字母表示数 1、代数式 用运算符号把数或表示数的字母连接而成的式子叫做 代数式。单独的一个数或一个字母也是代数式。 2、同类项 所有字母相同,并且相同字母的指数也分别相同的项 叫做同类项。几个常数项也是同类项。 3、合并同类项法则:把同类项的系数相加,字母和字 母的指数不变。 4、去括号法则 (1)括号前是“+” ,把括号和它前面的“+”号去掉后, 原括号里各项的符号都不改变。 (2)括号前是“” ,把括号和它前面的“”号去掉 后,原括号里各项的符号都要改变。 5、整式的运算: 整式的加减法:(1)去括号;(2)合并同类项。 第四章 平面图形及其位置关系 1、线段:绷紧的琴弦,人行横道线都可以近似的看做 线段。线段有两个端点。 2、射线:将线段向一个方向无限延长就形成了射线。 射线有一个端点。 3、直线:将线段向两个方向无限延长就形成了直线。 直线没有端点。 4、点、直线、射线和线段的表示 在几何里,我们常用字母表示图形。 一个点可以用一个大写字母表示。 一条直线可以用一个小写字母表示或用直线上两个点 的大写字母表示。 一条射线可以用一个小写字母表示或用端点和射线上 另一点来表示(端点字母写在前面)。 一条线段可以用一个小写字母表示或用它的端点的两 个大写字母来表示。 5、点和直线的位置关系有两种: 点在直线上,或者说直线经过这个点。 点在直线外,或者说直线不经过这个点。 6、直线的性质 (1)直线公理:经过两个点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量, 不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 7、线段的性质 (1)线段公理:两点之间的所有连线中,线段最短。 (2)两点之间的距离:两点之间线段的长度,叫做这两 点之间的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是一致的。 8、线段的中点: 点 M 把线段 AB 分成相等的两条相等的线段 AM 与 BM, 点 M 叫做线段 AB 的中点。 9、角: 有公共端点的两条射线组成的图形叫做角,两条射线 的公共端点叫做这个角的顶点,这两条射线叫做这个角的 边。 或:角也可以看成是一条射线绕着它的端点旋转而成 的。 10、平角和周角:一条射线绕着它的端点旋转,当终 边和始边成一条直线时,所形成的角叫做平角。终边继续 旋转,当它又和始边重合时,所形成的角叫做周角。 11、角的表示 角的表示方法有以下四种: 用数字表示单独的角,如1,2,3 等。 用小写的希腊字母表示单独的一个角,如 , 等。 用一个大写英文字母表示一个独立(在一个顶点处只 有一个角)的角,如B,C 等。 用三个大写英文字母表示任一个角,如 BAD,BAE,CAE 等。 注意:用三个大写英文字母表示角时,一定要把顶点 字母写在中间,边上的字母写在两侧。 12、角的度量 角的度量有如下规定:把一个平角 180 等分,每一份 就是 1 度的角,单位是度,用“”表示,1 度记作“1” , n 度记作“n” 。 把 1的角 60 等分,每一份叫做 1 分的角,1 分记作 “1 ” 。 把 1 的角 60 等分,每一份叫做 1 秒的角,1 秒记作 “1” ” 。 1=60 ,1=60” 13、角的性质 (1)角的大小与边的长短无关,只与构成角的两条射线 的幅度大小有关。 (2)角的大小可以度量,可以比较 (3)角可以参与运算。 14、角的平分线 从一个角的顶点引出的一条射线,把这个角分成两个 相等的角,这条射线叫做这个角的平分线。 15、平行线: 在同一个平面内,不相交的两条直线叫做平行线。平 行用符号“”表示,如“ABCD” ,读作“AB 平行于 CD” 。 注意: (1)平行线是无限延伸的,无论怎样延伸也不相交。 (2)当遇到线段、射线平行时,指的是线段、射线所在 的直线平行。 16、平行线公理及其推论 平行公理:经过直线外一点,有且只有一条直线与这 条直线平行。 推论:如果两条直线都和第三条直线平行,那么这两 条直线也互相平行。 补充平行线的判定方法: (1)平行于同一条直线的两直线平行。 (2)在同一平面内,垂直于同一条直线的两直线平行。 (3)平行线的定义。 17、垂直: 两条直线相交成直角,就说这两条直线互相垂直。其 中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 直线 AB,CD 互相垂直,记作“ABCD”(或 “CDAB”),读作“AB 垂直于 CD”(或“CD 垂直于 AB”)。 18、垂线的性质: 性质 1:平面内,过一点有且只有一条直线与已知直线 垂直。 性质 2:直线外一点与直线上各点连接的所有线段中, 垂线段最短。简称:垂线段最短。 19、点到直线的距离:过 A 点作 l 的垂线,垂足为 B 点,线段 AB 的长度叫做点 A 到直线 l 的距离。 20、同一平面内,两条直线的位置关系:相交或平行。 第五章 一元一次方程 1、方程 含有未知数的等式叫做方程。 2、方程的解 能使方程左右两边相等的未知数的值叫做方程的解。 3、等式的性质 (1)等式的两边同时加上(或减去)同一个代数式,所得 结果仍是等式。 (2)等式的两边同时乘以同一个数(或除以同一个不为 0 的数),所得结果仍是等式。 4、一元一次方程 只含有一个未知数,并且未知数的最高次数是 1 的整 式方程叫做一元一次方程。 5、解一元一次方程的一般步骤: (1)去分母(2)去括号(3)移项(把方程中的某一项改变 符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合 并同类项(5)将未知数的系数化为 1 第六章 生活中的数据 1、科学记数法 一般地,一个大于 10 的数可以表示成 的形式,其中 ,n 是正整数,这种记数方法叫做科学记数法。 2、扇形统计图及其画法: 扇形统计图:利用圆与扇形来表示总体与部分的关系, 即圆代表总体,圆中的各个扇形分别代表总体中的不同部 分,扇形的大小反映部分占总体的百分比的大小,这样的 统计图叫做扇形统计图。 画法: (1)计算不同部分占总体的百分比(在扇形中,每部分 占总体的百分比等于该部分所对应的扇形圆心角的度数与 360 的比)。 (2)计算各个扇形的圆心角(顶点在圆心的角叫做圆心 角)的度数。 (3)在圆中画出各个扇形,并标上百分比。 3、各种统计图的优缺点 条形统计图:能清楚地表示出每个项目的具体数目。 折线统计图:能清楚地反映事物的变化情况。 扇形统计图:能清楚地表示出各部分在总体中所占的 百分比。 第七章 可能性 1、确定事件和不确定事件 (1 )、确定事件 必然事件:生活中,有些事情我们事先能肯定它一定 会发生,这些事情称为必然事件。 不可能事件:有些事情我们事先能肯定它一定不会发 生,这些事情称为不可能事件。 (2)、不确定事件: 有些事情我们事先无法肯定它会不会发生,这些事情 称为不确定事件 (3)、 必然事件 确定事件 事件 不可能事件 不确定事件 2、不确定事件发生的可能性 一般地,不确定事件发生的可能性是有大小的。 必然事件发生的可能性是 1 不可能事件发生的可能性是 0 附:初中一年级数学学习方法总结 一、初中数学学习 的一般方法: 1.突出一个“勤”字(克服一个“惰”字) 数学家华罗庚曾经说过:“聪明在于学习,天才在于 勤奋” “勤能补拙是良训,一分辛劳一分才: 我们在学习的时候要突出一个勤字,克服一个“懒” 字,怎么突出“勤”字 “聪”:怎么个勤法,从这个字面上来看,要做到五 勤:“耳勤” “眼勤”(耳朵听,眼睛看,接受信息) “口勤”(讨论,回答问题,而不是讲话,消化信息) “脑勤”(善于思考问题,积极思考问题吸收、储存信 息)那是不是做到以上四点就行了呢?不是。这个字还有缺 陷,在聪下面加上“手” “手勤”(动手多实践,不仅光做题,做课件,做模型) 这样的人聪明不聪明? 最大的提高学习效率,首先要做到 上课认真听讲 (这是根本)回家先复习再做题如果课听不好,就别想消化 知识 2.学好初中数学还有两个要点,要狠抓两个要点: 学好数学,一要(动手),二要(动脑)。 动脑就是要学会观察分析问题,学会思考,不要拿到 题就做,找到已知和未知想象之间有什么联系,多问几个 为什么 动手就是多实践,多做题,要“拳不离手”(武术) “曲不离口”(唱歌) 同学就是“题不离手” ,这两个要点大家要记住。 “动脑又动手,才能最大地发挥大脑的效率” 3.做到“三个一遍” 大家听过“失败是成功之母”听过“重复是学习之母” 吗? 培根(18-19 世纪英国的哲学家)“知识就是力量” “重复是学习之母” 如何重复,我给你们解释一下: “上课要认真听一遍,动手推一遍,想一遍” “下课 看 ” “考试前 ” 4.重视“四个依据” 读好一本教科书它是教学、中考的主要依据; 记好一本笔记 它是教师多年经验的结晶; 做好做净一本习题集它是使知识拓宽; 记好一本心得笔记,最好每人自己准备一本错题集 二、分课前、课上、课后三个方面来谈一谈数学的学 习。 1.课前做什么,预习。有的同学会认为预习是浪费时 间,上课听老师讲讲不就可以了,为什么还要花时间预习。 其实预习非但不浪费时间,而且有很大的益处。首先,预 习是对自己自学能力的锻炼。老师不可能教给你全部的知 识,很多的知识都是靠自己自学得到的,这就需要我们有 良好的自学能力。其次,通过自己预习得到的要比通过上 课听老师讲得到的印象要深刻的多。 那该如何预习,预习些什么内容呢?第一,要看课本, 看课本上的基本概念和基本例题,对这部分内容要做到理 解。因为这就是基础,万变不离其宗,后面的任何变化都 离不开这个基础。第二,在理解基本概念的基础上完成课 后的随堂练习。因为通过什么来检测你是否理解了概念, 只有通过题目。课后的随堂练习的设置就是理解基本概念 后的简单的运用。如果预习的过程中有不懂的地方,要在 书上做好记号,上课时就要着重听这部分内容;如果内容简 单,自己能理解,那上课时就要听老师是如何讲解的,和 自己对照一下,看看自己的理解是否正确,或者看看有没 有其他的解题思路 2.课上做什么,认真听讲。听课是学习中最重要的环 节,是准确的掌握所学知识的关键。课上认真听十分钟胜 过课后自己看书三十分钟。那么上课该如何认真听讲,听 什么。第一、带着在预习中未懂的问题听课,注意力集中, 尽可能把疑点在课中解决。 第二,对于在预习中认为弄懂了的问题,主要听老师 的讲解是否和自己的理解一致,纠正自己在预习中对一些 知识的片面理解或错误理解。 第三,在预习中没有弄懂的问题,通过老师讲懂了或 还有疑问,要在课堂上把关键的地方记下来,课后要及时 进行向老师请教,弄懂、弄明白。 第四,在听课中注意不能只听问题的答案,关键是听 老师讲解例题的解题思路,明白了解题思路,你是学会了 做这一类题,而不是只是一道题。 例题是为巩固数学知识而讲,例题的作用是举一反三。 有人做过这样一个实验: 一个老师带着一个初一班,他每周都测验他的学生, 而且公开告诉他的学生,考题全部他上课讲的例题。学生 开始一片哗然,90%的学生有信心拿满分,只有班上几个最 差的学生不敢这么说,很快第一次测验结果出来了,及格 率 48%,满分率不到 8%,第二次情况有所好转,初一时这 个班数学成绩与同年级数学特长班平均分相差分。初二时 与数学班只差分,比年级平均分高 10 分。初三毕业,这个 班几乎与数学特长班没有区别。 第五,注意听老师在课堂中补充的例题,这些例题通 常具有代表性,听老师的解题思路,拓宽自己的知识,要 学会自己可以动手解决这一类问题。 3.课后该怎么做,完成练习和作业。要学好数学,必 须多做练习,但并不是题海战术。只顾看书,而不做或少 做练习,是不可能学好数学的。而一味的做题,而不顾解 题方法,也是很难在学习上收到成效的。 做练习要在有充分的准备之后,认真独立地完成。所 谓有充分准备,就是要先复习今天所学的知识和老师补充 的例题,把课本上的知识弄懂之后才能做练习。如果课本 知识还有不懂之处,应先复习课文,询问同学或老师,直 至懂了之后再做练习。 所谓认真,是指对每个习题都要认真思考,对问题的 每个细节都应思考清楚。注意养成一个全面细致地思考问 题的习惯。这种良好习惯一旦养成,它会在你的一生中大 有益处。另一方面,要认真演算,注意解答表述的条理性 和解题格式的规范性。许多同学常常在考试中马虎出错, 究其根源,必然形成马马虎虎的坏习惯。而“马虎”会长 久地带来危害,这种坏习惯一旦养成,十分顽固,很难克 服。 所谓独立完成作业,就是要靠自己的能力完成作业。 因为做练习的目的,一是巩固所学知识,二是检查对知识 的理解是否正确,培养和提高分析解决问题的能力。 要敢于啃难题。遇到难题一定要反复仔细推敲条件, 深入思考,在山穷水尽、自己能力确实承受不了的情况下, 问问别人是可以的,不要一觉得难,就不想做了。当然, 做难题要耗费较长的时间。有些同学以为这样做不合算, 不如问问省事,这种想法是不全面的。其实,帐得算两笔, 比如你由于解难题耗费的时间较长联想过很多知识,设想 了很多解法,都失败了,似乎收获是“零” ,但事实上,你 获得了大量的“副产品” ,而这“副产品“的价值会远远大 于本题目的价值。因为,由于解题的迫切需要联想了很多 知识,恰好是对这许许多多知识积极的复习;你想出了很多 方法,虽然没有能解决这个题目,但它是很好的思维训练, 对提高思维能力起到了不可低估的作用,况且这一个个方 法很可能在解决其他题目上奏效。大数学家希尔伯特把 “费尔马大定理”这道难题叫做“能下金蛋的母鸡” 。正是 因为有很多数学家在攻克“费尔马大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论