



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
五年级下册数学六单元统计教材分析第六单元 统计一 教学内容本单元主要包括两方面的内容:一是认识众数,理解众数的统计意义。二是认识复式折线统计图,了解其特点,并对数据进行简单分析和推测。二 本单元教材的编写特点。(1)注意与所学的统计知识的联系。通过前面的学习,学生对一些统计量的意义如平均数、中位数有了一定的认识,而且还认识了单式、复式条形统计图、单式折线统计图。因此,教材在编排本单元内容时,注意通过与先前统计知识的联系,帮助学生理解所学内容。如,众数的含义就是通过与平均数、中位数的对比来认识的,复式折线统计图也是由单式折线统计图引出的。这样既有助于加深对前面所学统计知识的理解,也便于对新知识的领悟。(2)提供丰富的生活素材,凸现统计知识的价值。 本单元所选素材涉及到体育、气象、消费等方面,不仅扩大了学生处理信息的范围,加强了与生活的联系,同时体会到统计知识的作用,明确学习目的。本单元的知识应用性很强,与学生的生活实际联系十分紧密,学生学习探究的兴趣会很高。三 教学目标1、知识与技能(1) 理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。(2)根据数据的具体情况,选择适当的统计量表示数据的不同特征。(3) 认识复式折线统计图,了解其特点,能根据需要,选择条形、折线统计图直观、有效地表示数据,并能对数据进行简单的分析和预测。2、过程与方法:经历众数、复式折线统计图的认识和对数据进行简单分析、预测的过程,体验小组合作探究、知识经验迁移及比较运用的学习方法。3、情感态度与价值观在学习活动中,体会统计知识的作用,感知数学知识与实际生活的密切联系,激发学生的学习兴趣。四 教学重点理解众数的含义,会求一组数据的众数。认识复式折线统计图,了解其特点。五 教学难点根据数据的具体情况,选择适当的统计量表示数据的不同特征。能根据需要,选择条形、折线统计图直观、有效地表示数据,并能对数据进行简单的分析和预测。六 教学建议1. 注意加强新旧知识之间的对比和衔接。2. 注重对统计量意义的理解,避免简单的统计量的计算。3. 注重对学生开展统计活动的过程性评价。4. 这部分内容可用3课时进行教学。七 具体内容编排(一). 众数 这部分内容紧密结合学生的生活实际,围绕“如何根据身高选拔参加集体舞比赛的队员”“你认为用哪一个数据代表全班同学视力的平均水平比较合适”等问题展开讨论,使学生在提出问题、观察和处理数据、做出决策的过程中,认识另一种统计量众数。在理解众数的意义及作用的同时,了解平均数、中位数与众数的区别,并能根据统计量进行简单的预测或做出决策。1、 例1 1)要引导学生从“20个身高数据中,你认为10名参赛队员身高是多少比较合适”展开数学思考,汇报时既要阐述各自的观点,让学生从平均数,中位数的已有经验出发,如说清楚“为什么觉得身高在1.52米左右的同学参加集体舞比赛比较合适?”并鼓励其他学生进行评议,再观察20个数据的特征,感受众数的含义(一组数据中出现次数最多的数是这组数据的众数)。2)要重视在多次感受众数的基础上,引导学生理解众数的特征(众数能够反映一组数据的集中情况),形成找众数的方法。3)注重对统计量意义的理解。不仅让学生知道什么是众数,会求众数,更要结合具体数据理解众数的作用和特点。对众数的认识、理解,要在对平均数、中位数、众数等统计量的比较中来加强,特别要重视对中位数和众数含义的区别的感受。描述一组数据的集中趋势,可以用平均数、中位数和众数。2、重视理解平均数、中位数与众数的联系与区别。(二)复式折线统计图学生在前面已经学习了复式条形统计图及单式折线统计图,本单元在此基础上学习复式折线统计图。教材以体育方面的素材为例,通过让学生比较两组数据的变化情况,感受到单式折线统计图的局限性,进而了解复式折线统计图的特点。1)要从如何更方便地比较复式折线统计图的特征出发,引导学生在数学思考的基础上,运用复式条形统计图的经验,进行尝试;把两个单式折线统计图合并为一个复式折线统计图。2)要在展示学生合并的作品的同时,通过交流,比较单式折线统计图与复式折线统计图的异同点。3)要结合具体的素材,引导学生看懂复式折线统计图,并能展开有根据地推断与预测。1、例2 我们可以这样设计(1)创设情境,激发兴趣。通过第914届亚运会中国和韩国获金牌情况的对比,(2)复习旧知,主体准备。首先回忆复式条形统计图的制作过程:有两个单式条形统计图合并而成。在复习单式折线统计图画法。分描点、标数、连线三步完成折线统计图的,并熟练认图。 (3)认知冲突一,巧妙引出复式折线统计图。根据题目要求比较中韩两国获得金牌数量的变化情况,只看韩国获金牌情况的折线统计图是不行的。看完了中国,再看韩国,来来回回地看,不便于观察。例2使学生感受到单式折线统计图的局限性,从而体会到引入复式折线统计图的必要性。有什么好方法能清楚地比较两国获金牌数量的变化趋势?学生完善统计图,使它成为一张能比较两国金牌数量变化趋势的复式折线统计图。然后,让学生充分观察、比较单式折线统计图与复式折线统计图的不同点。(4)认知冲突二,自然补充图例。黑板上画好的折线统计图,在这位同学未说明前,你有看不懂的地方吗?(哪条折线表示中国,哪条表示韩国呢?)想个办法能让大家一眼就能看清楚吗?介绍图例和复式折线统计图的名称。完整回忆制作复式折线统计图分几步?让学生亲历处理数据的过程,充分认识统计的现实意义,(5)分析数据,预测、联想。根据复式折线统计图,比较、分析中国和韩国在第914届亚运会上金牌数量的变化趋势。通过对比,明确图例的作用,了解复式折线统计图的画法,体会复式折线统计图便于比较的特点。通过回答例2后面的问题,使学生认识到从两条折线的变化趋势,可以看出中国获得金牌的数量呈上升趋势,韩国则趋于平稳。预测中国在第15届亚运会上获金牌的趋势会是怎样的?中国165枚,韩国58枚。16届呢?中199枚、韩76枚(爱国主义情感,增强民族自豪感)复式折线统计图与单式折线统计图相比,有什么相同之处?有什么不同之处? 综合应用:打电话(第132133页)教材说明通过探究活动,体会数学与生活的密切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力。同时,通过画图、列表的方式,发现事物隐含的规律,培养学生归纳推理的思维能力。 在四年级上册的“数学广角”中教材安排了有关优化思想的学习,通过日常生活中的一些简单事例,让学生尝试在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。“打电话”这个综合应用就是结合学生生活中熟悉的素材,合唱队在假期接到一个紧急任务,老师要打电话尽快通知到每个队员。让学生帮助老师设计一个打电话的方案,并从中寻找最优的方案。 教学目标:1、知识与技能:使学生在解决问题的多种方案中寻找最优方案,初步体会运筹思想和对策论在解决问题中的运用。2、过程与方法:经历设计打电话方案,并找出最优方案的过程,体验画图分析、交流讨论的学习方法。3、情感态度价值观:在学习活动中体会数学与生活的密切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,培养学生归纳推理的思维能力。教学重点:理解打电话的最优方案的方法。教学重点:能够运用打电话的最优方案的方法解决一些简单的实际问题。教法学法:教法:创设情境,质疑引导。学法:分析思考,交流讨论。 本活动可分为以下三个部分。1. 探讨最优方案。(突出“尽快”) 教材首先联系生活实际提出问题:15人的合唱队接到紧急演出,通过打电话通知每个队员,如果每分钟通知1人,怎样尽快通知到每个队员?让学生设计一个打电话的最快方案。根据学生的思维水平,教材呈现了几种不同的方案:一种是最简单的方案,就是一个一个地通知,当然这种方案需要的时间最长,一共需要15分钟;另一种是分组通知的方法,这种方案比一个一个通知要省时间。如,平均分成3个组,通知完15人至少需要7分钟。那是不是分的组越多用的时间就越少呢?对于这个问题可以让学生通过不同的分组方案来检验。如,按(4,4,4,3)分成4组,需要6分钟,如果平均分成5组,每组3人,则需要7分钟,所以并不是分的组越多所需的时间越少。为了便于理解,教材用图示的方式直观地表示出每种方案,也能帮助学生计算出所需的时间。 接下来,让学生继续探讨还有没有更快的方法。学生在前面分组的方案中可能已经体会到要想时间最少,就需要每个接到通知的队员立即通知后面的队员,每个人都不空闲,照这样继续下去直到通知到全体队员为止,所需的时间最少。在学生讨论的基础上,教材同样用图示的方法直观地展示了这种方案(见下图),按照时间的顺序,用不同的颜色动态地显示了每分钟新接到通知的队员和总共通知的队员。这种方案就是用时最少的方案,通过图示可以找出这个方案的用时是4分钟。2.研究最佳方案,从中发现规律。 通过观察这个示意图,让学生从中发现这种方案中隐含的规律。从图上学生就能清楚地看到每增加一分钟新接到通知的队员数正好是前面所有接到通知的队员和老师的总数,也就是第n分钟新接到通知的队员数等于前(n-1)分钟内接到通知的队员和老师的总数。因而到第n分钟所有接到通知的队员和老师的总数就是一个等比数列,通项公式为an=2n,到第n分钟所有接到通知的队员总数就是(2n-1)人。当然这个公式不需要学生掌握,学生只要能通过示意图发现上面的规律,根据规律找到到第n分钟所有接到通知的队员总数就可以了。3. 应用规律,解决实际问题。 发现这个规律后,可以让学生直接利用这个规律来解决前面提出的问题了。随着时间的增加,所有接到通知的队员数分别为1,3,7,15,31因此要通知完15个队员,只需要4分钟。此外教材还让学生根据这个规律算一算5分钟最多可以通知多少人,以及如果一个合唱团有50人,最少花多少时间就能通知到每个人。这些问题利用发现的规律都能轻松地解决。 找到打电话的最优方案,但在具体实施中还有个问题要解决,那就是要设计好打电话的顺序,也就是说每个队员要清楚他接到电话后,后面要怎样继续通知其他队员。因此这个方案还需要事先制定好一个打电话的流程示意图,让老师和每个队员都明确接到通知后,按照怎样的顺序通知后面的队员。只有严格按照事先制定好的方案执行,才能达到节省时间的目的。教学建议1. 这个综合实践活动可以用1课时进行教学。2. 除了教材提供的这个实际问题,教师也可以创设其他类似的情景,但是要注意这里人数的数据不要太大,因为数据过大,对学生尝试不同的方案会带来一定的困难。而且从简单的数据开始找到规律后,再推广到一般情况也是数学中解决问题的一种重要的策略和方法。3. 提出问题后,教师可以放手让学生分组设计方案并用适当的方式呈现出来。为了激发学生的积极性,教师可以创设一些竞争机制激励学生设计出最佳的方案。小组活动时,教师可以通过巡视了解学生不同的设计方案并适时地加以指导。对于学生不同的方案,只要合理,教师都应给予鼓励,以保护学生学习和探索的积极性。4. 在学生汇报的基础上,教师可以提出这样的问题:是不是分的组越多用的时间越少呢?如果学生汇报的方案中有不同的分组方案,可以马上从这些分组方案的对比中找到答案。在引导学生探讨分组对时间的影响中,教师可以进一步引导学生思考:还有更快的方法吗?怎样保证时间最少呢?让学生结合刚才不同分组的方案进行讨论,通过交流发现:只有每个接到通知的队员都继续通知后面的队员,直到全部通知到为止,这样每个接到通知的队员都不空闲才是最快的方案。5. 接下来以小组为单位,让学生用自己喜欢的方式把这种最优的方案表示出来,除了教材呈现的方法,学生可以有不同方式的示意图。为了便于学生发现规律,这里可以让学生把每一分钟新接到通知的队员用不同的颜色或图形表示出来,当然也可以直接用序号来表示。设计好之后,通过展示和交流,教师进一步引导学生观察:通过这个示意图,你发现了什么规律?可以适当地提示学生从人数的变化去观察。学生在观察、思考、讨论、交流后,再来汇报发现的规律,这里主要让学生发现每增加一分钟新接到通知的队员数正好是前面所有接到通知的队员和老师的总数,也就是第n分钟新接到通知的队员数等于前(n-1)分钟所有接到通知的队员和老师的总数,也可以说到第n分钟所有接到通知的队员和老师的总数是前(n-1)分钟所有接到通知的队员和老师的总数的2倍。有的学生可能会用表格的方式来表示发现的规律(如下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年烷基化工艺作业考试模拟题及解析
- 2025年绿色食品冷链配送服务合作协议
- 2025年汽车配件行业备货协议-新能源汽车关键部件定制合同
- 2025年办公楼搬迁及全方位商务接待与后勤保障服务合同
- 2025年商务酒店翻新合同详列装修项目及验收规范
- 2025年新型商业综合体车位租赁与互联网营销一体化合同
- 2025年度环保设施设备供应与维护合同规范范本
- 二零二五年消防设施班组劳务承揽协议
- 2025年公共机构合同争议规避及应急响应专项服务协议
- 中医院特色病历资料数字化制作与打印外包合作协议
- 住院病人防止走失课件
- 2024年重庆永川区招聘社区工作者后备人选笔试真题
- 医学技术专业讲解
- 2025年临床助理医师考试试题及答案
- 唯奋斗最青春+课件-2026届跨入高三第一课主题班会
- 2025民办中学教师劳务合同模板
- 2025年南康面试题目及答案
- 2025年事业单位考试贵州省毕节地区纳雍县《公共基础知识》考前冲刺试题含解析
- 高中喀斯特地貌说课课件
- 黄冈初一上数学试卷
- 留疆战士考试试题及答案
评论
0/150
提交评论