PN Diode ProjectPN结二极管项目.doc_第1页
PN Diode ProjectPN结二极管项目.doc_第2页
PN Diode ProjectPN结二极管项目.doc_第3页
PN Diode ProjectPN结二极管项目.doc_第4页
PN Diode ProjectPN结二极管项目.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

acute: pn diode modeling dragica vasileska and gerhard klimeck equilibrium solver: you are provided with a matlab script of an equilibrium 1d poisson equation solver for a pn-diode. please try to understand and run the code for the following doping densities: (a) na = 1016 cm-3, nd =1016 cm-3 (b) na = 1016 cm-3, nd =1018 cm-3 (c) na = 1018 cm-3, nd =1018 cm-3 for each of these cases plot the potential and electric field profiles, the electron and hole densities and the total charge densities. from these plots extract the width of the depletion region and the peak electric field. compare your simulated data with the depletion charge approximation analytical results. non-equilibrium solver: develop a one-dimensional (1d) drift-diffusion simulator for modeling pn-junctions (diodes) under forward and reverse bias conditions. include both types of carriers in your model (electrons and holes). use the finite-difference expressions for the electron and hole current continuity equations that utilize the sharfetter-gummel discretization scheme. model: silicon diode, with permittivity and intrinsic carrier concentration f/m 1005 . 1 10 sc at t=300k. in all your simulations assume that t=300k. use concentration- 310 cm 105 . 1 i n dependent and field-dependent mobility models and srh generation-recombination process. assume ohmic contacts and charge neutrality at both ends to get the appropriate boundary conditions for the potential and the electron and hole concentrations. for the electron and hole mobility use 1500 and 1000 cm2/v-s, respectively. for the srh generation-recombination, use taun0=taup0=0.1 us. to simplify your calculations, assume that the trap energy level coincides with the intrinsic level. doping: use and as a net doping of the p- and n-regions, ncm a 1016 3 ncm d 1017 3 respectively. numerical methods: use the lu decomposition method for the solution of the 1d poisson and the two 1d continuity equations for electrons and holes individually. use gummels decoupled scheme, described in the class, to solve the resultant set of coupled set of algebraic equations. outputs: plot the conduction band edge under equilibrium conditions (no current flow) and for va=0.625 v. plot the electron and hole densities under equilibrium conditions (no current flow) and for va=0.625 v. plot the electric field profile under equilibrium conditions (no current flow) and for va=0.625 v. vary the anode bias from 0 to 0.625 v, in voltage increments that are fraction of the va thermal voltage , to have stable convergence. plot the resulting i-v vk t q tb / characteristics. the current will be in a/unit area, since you are doing 1d modeling. check the conservation of current when going from the cathode to the anode, which also means conservation of particles in your system. for the calculation of the current density, use the results given in the notes. for =0.625 v, plot the position of the electron and hole quasi-fermi levels, with respect va to the equilibrium fermi level, assumed to be the reference energy level. final note: when you submit your project report, in addition to the final results, give a brief explanation of the problem you are solving with reference to the listing of your program that you need to turn in with the report. % % % % 1d poisson equation solver for pn diodes % % % % % defining the fundamental and material constants % q = 1.602e-19; % c or j/ev kb = 1.38e-23; % j/k eps = 1.05e-12; % this includes the eps = 11.7 for si f/cm t = 300; % k ni = 1.45e10; % intrinsic carrier concentration 1/cm3 vt = kb*t/q; % ev rnc = 2.82e19; % effective dos of the conduction band dec = vt*log(rnc/ni); % define doping values % na = 1e18; % 1/cm3 nd = 1e18; % 1/cm3 % calculate relevant parameters for the simulation % vbi = vt*log(na*nd/(ni*ni); w = sqrt(2*eps*(na+nd)*vbi/(q*na*nd) % cm wn = w*sqrt(na/(na+nd) % cm wp = w*sqrt(nd/(na+nd) % cm wone = sqrt(2*eps*vbi/(q*na) % cm e_p = q*nd*wn/eps % v/cm ldn = sqrt(eps*vt/(q*nd); ldp = sqrt(eps*vt/(q*na); ldi = sqrt(eps*vt/(q*ni); % calculate relevant parameters in an input file % % write to a file save input_params.txt na nd vbi w wn wp e_p ldn ldp %material_constants %define some material constants % setting the size of the simulation domain based % on the analytical results for the width of the depletion regions % for a simple pn-diode % x_max = 0; if(x_max ldp) dx=ldp; end dx = dx/20; % calculate the required number of grid points and renormalize dx % n_max = x_max/dx; n_max = round(n_max); dx = dx/ldi; % renormalize lengths with ldi % set up the doping c(x) = nd(x) - na(x) that is normalized with ni % for i = 1:n_max if(i n_max/2) dop(i) = nd/ni; end end % initialize the potential based on the requirement of charge % neutrality throughout the whole structure for i = 1: n_max zz = 0.5*dop(i); if(zz 0) xx = zz*(1 + sqrt(1+1/(zz*zz); elseif(zz delta_max) delta_max=xx; end %sprintf(delta_max = %d,delta_max) %k_iter = %d,k_iter, end %delta_max=max(abs(delta); % test convergence and recalculate forcing function and % central coefficient b if necessary if(delta_max delta_acc) flag_conv = 1; else for i = 2: n_max-1 b(i) = -(2/dx2 + exp(fi(i) + exp(-fi(i); f(i) = exp(fi(i) - exp(-fi(i) - dop(i) - fi(i)*(exp(fi(i) + exp(-fi(i); end end end % write the results of the simulation in files % xx1(1) = dx*1e4; for i = 2:n_max-1 ec(i) = dec - vt*fi(i); %values from the second node% ro(i) = -ni*(exp(fi(i) - exp(-fi(i) - dop(i); el_field1(i) = -(fi(i+1) - fi(i)*vt/(dx*ldi); el_field2(i) = -(fi(i+1) - fi(i-1)*vt/(2*dx*ldi); n(i) = exp(fi(i); p(i) = exp(-fi(i); xx1(i) = xx1(i-1) + dx*ldi*1e4; end ec(1) = ec(2); ec(n_max) = ec(n_max-1); xx1(n_max) = xx1(n_max-1) + dx*ldi*1e4; el_field1(1) = el_field1(2); el_field2(1) = el_field2(2); el_field1(n_max) = el_field1(n_max-1); el_field2(n_max) = el_field2(n_max-1); nf = n*ni; pf = p*ni; ro(1) = ro(2); ro(n_max) = ro(n_max-1); figure(1) plot(xx1, fi)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论