1.2 直角三角形(第1课时)教案_第1页
1.2 直角三角形(第1课时)教案_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2 直角三角形(第一课时)教案教学目标:1、进一步掌握推理证明的方法,发展演绎推理能力。2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。教学过程:引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。定理:直角三角形两条直角边的平方和等于斜边的平方。来源:如图,在ABC中,C=90,BC=a,AC=b,AB=c,来源:延长CB至点D,使BD=b,作EBD=A,并取BE=c,连接ED、AE,则ABCBED。BDE=90,ED=a(全等三角形的对应角相等,对应边相等)。来源:四边形ACDE是直角梯形。S梯形ACDE =(a+b)(a-b)= (a+b)2ABE=180-ABC-EBD=180- 90=90AB=BESABC = c2S梯形ACDE = SABE +SABC+ SBED , (a+b)2=c2+ab+ab即a2+ab+b2=c2+ab+aba2+b2=c2反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?已知:如图,在ABC,AB2+AC2=BC2,求证:ABC是直角三角形。证明:作出RtABC,使A=90,AB=AB,AC=AC,则来源:AB2+AC2=BC2 (勾股定理)AB2+AC2=BC2 ,AB=AB,AC=AC,BC2= BC2BC=BCABCABC (SSS)A=A=90(全等三角形的对应角相等)因此,ABC是直角三角形。定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。来源:w

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论