




已阅读5页,还剩55页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东北电力大学本科毕业设计论文摘 要直流电动机具有优良的调速特性,如调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用如切削机床,造纸机等。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现;软件设计中,进行电流环和速度环中控制量的计算以及相位角度的计算,产生脉冲触发信号。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用matlab软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用simulink进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行.关键词 动态控制;直流电机;直流调速系统;速度调节器;电流调节器;速度环;电流环;pwm;双闭环系统;仿真abstractdc motor has been widely used in the area of electric drive such as cutting machines, paper, etc.because of its neatly adjustment, simple method and dc motor has been widely used in the area of electric drive because of its neatly adjustment, simple method and smooth control in a wide range, besides its control performance is excellent. beginning with the theory of dc motor, this dissertation builts up the mathematic model of dc speed control system with double closed loops, detailedly discusses the static and dynamic state performance of the system. afterward, according to automation theroy this papar calculates the parameters of the system. then, this dissertation simulates and analyzes the system by means of simulink. the results of simulation are consistent with theory calculation. some experience was acquired through simulation. based on the theory and simulation, this dissertation designs a dc speed control system with double closed loops, discusses the realization of main circuit, feedback circuit, control circuit and trigger circuit;in the design of software , calculate the current loop and speed ,and generate trigger signal pulse.the results of experiment show that the static and dynamic state performance of this system are good, which indicate that the design can meet the requirements.computer-aided analysis and design are carried out for speed-controlling system of the d-c motorby by using tool box and simulink.keywords: dynamic control;dc motor;dc governing system;speed governor;current governor;speed loop;current loop;pwm;two closed-loops control system;simulink目 录摘 要iabstractii第一章 绪 论11.1 概 述11.2 直流调速系统的发展史11.3 研究直流闭环脉宽调速系统与仿真的目的和意义31.4 本文的研究内容4第二章 直流调速系统52.1 直流调速系统的调速原理及性能指标52.1.1 直流调速系统的调速原理52.1.2 直流调速用可控直流电源62.1.3 调速系统的性能指标102.2 晶闸管-电动机直流调速控制系统142.2.1 开环直流调速系统存在的问题142.2.2 速度负反馈单闭环调速系统的组成及静特性142.3 转速、电流双闭环直流调速系统的理论分析172.3.1 转速、电流双闭环调速系统的工作过程和原理192.3.2 转速、电流双闭环调速系统的组成192.3.3 转速、电流双闭环调速系统的静特性202.4 转速、电流双闭环直流调速系统的数学模型和动态性能分析232.4.1 转速、电流双闭环直流调速系统的数学模型的建立232.4.2 起动过程分析232.4.3 动态抗干扰性分析272.5 调节器的工程设计方法272.5.1 pi调节器272.5.2 调节器的设计方法282.5.3 型系统与型系统的性能比较292.5.4 转速-电流调节器结构的确定302.6 电流环、速度环的设计302.6.1 转速调节器、电流调节器在双闭环直流调速系统中的作用302.6.2 调节器的设计参数312.6.3 调节器电流环的设计322.6.4 调节器速度环的设计33第三章 pwm脉宽调制353.1 pwm基本介绍353.2 脉宽调制变换器353.3 桥式可逆pwm变换器37第四章 直流电动机数学模型的建立404.1 数学模型的建立404.1.1 写出平衡方程式、拉普拉斯变换404.1.2 动态结构图414.2 本设计中电动机部分的数据采集和计算46第五章 双闭环直流调速系统仿真485.1 matlab简介485.2 双闭环调速系统的仿真48结 论51参 考 文 献52致 谢54附 录5555第一章 绪 论1.1 概 述直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加工电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采用电气方法调速。由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速系统。但是就目前来看,直流调速系统仍然是自动调速系统的主要形式。在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。因此,我们先着重讨论直流调速系统。1.2 直流调速系统的发展史直流传动具有良好的调速特性和转矩控制性能,在工业生产中应用较早并沿用至今。早期直流传动采用有接点控制,通过开关设备切换直流电动机电枢或磁场回路电阻实现有级调速。1930年以后出现电机放大器控制的旋转交流机组供电给直流电动机(由交流电动机m和直流发电机g构成,简称gm系统),以后又出现了磁放大器和汞弧整流器供电等,实现了直流传动的无接点控制。其特点是利用了直流电动机的转速与输入电压有着简单的比例关系的原理,通过调节直流发电机的励磁电流或汞弧整流器的触发相位来获得可变的直流电压供给直流电动机,从而方便地实现调速。但这种调速方法后来被晶闸管可控整流器供电的直流调速系统所取代,至今已不再使用。1957年晶闸管问世后,采用晶闸管相控装置的可变直流电源一直在直流传动中占主导地位。由于电力电子技术与器件的进步和晶闸管系统具有的良好动态性能,使直流调速系统的快速性、可靠性和经济性不断提高,在20世纪相当长的一段时间内成为调速传动的主流。今天正在逐步推广应用的微机控制的全数字直流调速系统具有高精度、宽范围的调速控制,代表着直流电气传动的发展方向。直流传动之所以经历多年发展仍在工业生产中得到广泛应用,关键在于它能以简单的手段达到较高的性能指标。例如高精度稳速系统的稳速精度达数十万分之一,宽调速系统的调速比达1:10000以上,快速响应系统的响应时间已缩短到几毫秒以下。在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。 长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。直流电动机具有良好的运行和控制特性,长期以来,直流调速系统一直占据垄断地位,其中,双闭环直流调速系统是目前直流调速系统中的主流设备,它具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。自19世纪80年代起至19世纪末以前,工业上传动所用的电动机一直以直流电动机为唯一方式。到了19世纪末,出现了三相电源和结构简单,坚固耐用的交流笼型电动机以后,交流电动机传动在不调速的场合才代替了直流电动机传动装置。然而,随着生产的不断发展,调速对变速传动装置是一项基本的要求,现代应用的许多变速传动系统,在满足一定的调速范围和连续(无级)调速的同时,还必须具有持续的稳定性和良好的瞬态性能。虽然直流电动机可以满足这些要求,但由于直流电动机在容量、体积、重量、成本、制造和运行维护方面都不及交流电动机,所以长期以来人们一直渴望开发出交流调速电动机代替直流电动机。从60年代起,国外对交流电动机调速已开始重视。随着电力电子学与电子技术的发展,特别是电力半导体器件的发展,使得采用半导体变流技术的交流调速系统得以实现。尤其是70年代以来,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,为交流电力拖动系统的发展创造了有利条件,促进了各种类型交流调速系统:如串级调速系统,变频调速系统,无换向器电动机调速系统以及矢量控制调速系统等的飞速发展。目前交流电力拖动系统已具备了较宽的调速范围,较高的稳速精度,较快的动态响应,较高的工作效率以及可以四象限运行和制动,其静特性已可以与直流电动机拖动系统相媲美。国际上许多国家交流电力拖动系统已进入工业实用化阶段,大有取代直流电力拖动系统的势头。但就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。直流电动机可逆调速系统数字化已经走向实用化,其主要特点是:(1)常规的晶闸管直流调速系统中大量硬件可用软件代替,从而简化系统结构,减少了电子元件虚焊、接触不良和漂移等引起的一些故障,而且维修方便;(2)动态参数调整方便;(3)系统可以方便的设计监控、故障自诊断、故障自动复原程序,以提高系统的可靠性;(4)可采用数字滤波来提高系统的抗干扰性能;(5)可采用数字反馈来提高系统的精度;(6)容易与上一级计算机交换信息;(7)具有信息存储、数据通信的功能;(8)成本较低。而且,直流调速系统在理论和实践上都比较成熟,从控制技术的角度来看,又是交流调速系统的基础,因此,应首先着重研究直流调速系统,这样才可以在掌握调速系统的基本理论下更好的对交流调速系统进行研究和探索。1.3 研究双闭环直流调速系统的目的和意义转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统, 采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。转速、电流双闭环直流调速系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。首先,应掌握转速、电流双闭环直流调速系统的基本组成及其静特性;然后,在建立该系统动态数学模型的基础上,从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用;第三,研究一般调节器的工程设计方法,和经典控制理论的动态校正方法相比,得出该设计方法的优点,即计算简便、应用方便、容易掌握;第四,应用工程设计方法解决双闭环调速系统中两个调节器的设计问题,等等。通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个生产领域。1.4 本文的研究内容本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。本文的主要工作:1. 掌握电机传动的工作原理及应用;2. 设计调速系统;主要内容包括:触发电路设计;电流调节器设计;转速调节器设计。3. 建立数学模型,计算其参数;4. 进行数字仿真,验证其设计;5. 完成相关实验。第二章 直流调速系统2.1 直流调速系统的调速原理及性能指标2.1.1 直流调速系统的调速原理直流电动机具有良好的起、制动性能,宜于在广范围内平滑调速,所以由晶闸管直流电动机(vm)组成的直流调速系统是目前应用较普遍的一种电力传动自动化控制系统。它在理论上实践上都比较成熟,而且从闭环控制的角度看,它又是交流调速系统的基础。从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统(伺服系统)、张力控制系统、多电机同步控制系统等多种类型,各种系统往往都是通过控制转速来实现的,因此,调速系统是最基本的电力拖动控制系统。直流电动机的转速和其它参量的关系和用式(21)表示 (21)式中 n电动机转速;u电枢供电电压; i电枢电流; r电枢回路总电阻,单位为 由电机机构决定的电势系数。在上式中,是常数,电流i是由负载决定的,因此,调节电动机的转速可以有三种方法:(1)调节电枢供电电压u;(2) 减弱励磁磁通;(3) 改变电枢回路电阻r。对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式最好。改变电阻只能实现有级调速;减弱励磁磁通虽然能够平滑调速,但调速的范围不大,往往只是配合调压方案,在基速(额定转速)以上做小范围的弱磁升速。因此,自动控制的直流调速系统往往以改变电压调速为主。2.1.2 直流调速用可控直流电源 改变电枢电压调速是直流调速系统采用的主要方法,调节电枢供电电压或者改变励磁磁通,都需要有专门的可控直流电源,常用的可控直流电源有以下三种: (1)旋转变流机组。用交流电动机和直流发电机组成机组,以获得可调的直流电压。 (2)静止可控整流器。用静止的可控整流器,如汞弧整流器和晶闸管整流装置,产生可调的直流电压。 (3)直流斩波器或脉宽调制变换器。用恒定直流电源或不可控整流电源供电,利用直流斩波或脉宽调制的方法产生可调的直流平均电压。 下面分别对各种可控直流电源以及由它供电的直流调速系统作概括性介绍一、 可控整流器 从20世纪50年代开始,采用汞弧整流器和闸流管这样的静止变流装置来代替旋转变流机组,形成所谓的离子拖动系统。离子拖动系统克服旋转变流机组的许多缺点,而且缩短了响应时间,但是由于汞弧整流器造价较高,体积仍然很大,维护麻烦,尤其是水银如果泄漏,将会污染环境,严重危害身体健康。因此,应用时间不长,到了20世纪60年代又让位给更为经济可靠的晶闸管整流器。1957年,晶闸管问世,它是一种大功率半导体可控整流元件,俗称可控硅整流元件,简称“可控硅”,20世纪60年代起就已生产出成套的晶闸管整流装置。晶闸管问世以后,变流技术出现了根本性的变革。目前,采用晶闸管整流供电的直流电动机调速系统(即晶闸管电动机调速系统,简称v-m系统,又称静止ward-leonard系统)已经成为直流调速系统的主要形式。图21所示是v-m系统的原理框图,图中v是晶闸管可控整流器,它可以是任意一种整流电路,通过调节触发装置gt的控制电压来移动触发脉冲的相位,从而改变整流输出电压平均值,实现电动机的平滑调速。和旋转变流机组及离子拖动变流相比,晶闸管整流不仅在经济性和可靠性上都有很大提高,而且在技术性能上显示出很大的优越性。晶闸管可控整流器的功率放大倍数大约在,控制功率小,有利于微电子技术引入到强电领域;在控制作用的快速性上也大大提高,有利于改善系统的动态性能。但是,晶闸管整流器也有它的缺点,主要表现在以下方面:(1)晶闸管一般是单向导电元件,晶闸管整流器的电流是不允许反向的,这给电动机实现可逆运行造成困难。必须实现四象限可逆运行时,只好采用开关切换或正、反两组全控型整流电路,构成v-m可逆调速系统,后者所用变流设备要增多一倍。(2)晶闸管元件对于过电压、过电流以及过高的du/dt和di/dt十分敏感,其中任一指标超过允许值都可能在很短时间内元件损坏,因此必须有可靠的保护装置和符合要求的散热条件,而且在选择元件时还应保留足够的余量,以保证晶闸管装置的可靠运行。(3)晶闸管的控制原理决定了只能滞后触发,因此,晶闸管可控制整流器对交流电源来说相当于一个感性负载,吸取滞后的无功电流,因此功率因素低,特别是在深调速状态,即系统在较低速运行时,晶闸管的导通角很小,使得系统的功率因素很低,并产生较大的高次谐波电流,引起电网电压波形畸变,殃及附近的用电设备。如果采用晶闸管整流装置的调速系统在电网中所占容量比重较大,将造成所谓的“电力公害”。为此,应采取相应的无功补偿、滤波和高次谐波的抑制措施。(4)晶闸管整流装置的输出电压是脉动的,而且脉波数总是有限的。如果主电路电感不是非常大,则输出电流总存在连续和断续两种情况,因而机械特性也有连续和断续两段,连续段特性比较硬,基本上还是直线;断续段特性则很软,而且呈现出显著的非线性。图21管电动机调速系统原理框图(v-m系统)二、 直流斩波器或脉宽调制变换器直流斩波器又称直流调压器,是利用开关器件来实现通断控制,将直流电源电压断续加到负载上,通过通、断时间的变化来改变负载上的直流电压平均值,将固定电压的直流电源变成平均值可调的直流电源,亦称直流直流变换器。它具有效率高、体积小、重量轻、成本低等优点,现广泛应用于地铁、电力机车、城市无轨电车以及电瓶搬运车等电力牵引设备的变速拖动中。图22为直流斩波器的原理电路和输出电压波型,图中vt代表开关器件。当开关vt接通时,电源电压u。加到电动机上;当vt断开时,直流电源与电动机断开,电动机电枢端电压为零,此反复。图22直流斩波器原理电路及输出电压波型 (a)原理图(b)电压波型这样,电动机电枢端电压的平均值为: (22)式中,t开关器件的通断周期;开关器件的导通时间;占空比;开关频率。由式(22)可知,直流斩波器的输出电压平均值可以通过改变占空比,即通过改变开关器件导通或关断时间来调节,常用的改变输出平均电压的调制方法有以下三种:(1)脉冲宽度调制(pulse width modulation,简称pwm)。开关器件的通断周期t保持不变,只改变器件每次导通的时间,也就是脉冲周期不变,只改变脉冲的宽度,即定频调宽。(2)脉冲频率调制(pulse frequency modulation,简称pfw)。开关器件每次导通的时间不变,只改变通断周期t或开关频率f,也就是只改变开关的关断时间,即定宽调频,称为调频。(3)两点式控制。开关器件的通断周期t和导通时间均可变,即调宽调频,亦可称为混合调制。当负载电流或电压低于某一最小值时,使开关器件导通;当电流或电压高于某一最大值时,使开关器件关断。导通和关断的时间以及通断周期都是不确定的。构成直流斩波器的开关器件过去用得较多的是普通晶闸管和逆导晶闸管,它们本身没有自关断的能力,必须有附加的关断电路,增加了装置的体积和复杂性,增加了损耗,而且由它们组成的斩波器开关频率低,输出电流脉动较大,调速范围有限。自20世纪70年代以来,电力电子器件迅速发展,研制并生产了多种既能控制其导通又能控制其关断的全控型器件,如门极可关断晶闸管(gto)、电力电子晶体管(gtr)、电力场效应管(p-mosfet)、绝缘栅双极型晶体管(igbt)等,这些全控型器件性能优良,由它们构成的脉宽调制直流调速系统(简称pwm调速系统)近年来在中小功率直流传动中得到了迅猛的发展,与v-m调速相比,pwm调速系统有以下优点:(1)采用全控型器件的pwm调速系统,其脉宽调制电路的开关频率高,一般在几khz,因此系统的频带宽,响应速度快,动态抗扰能力强。(2)由于开关频率高,仅靠电动机电枢电感的滤波作用就可以获得脉动很小的直流电流,电枢电流容易连续,系统的低速性能好,稳速精度高,调速范围宽,同时电动机的损耗和发热都较小。(3)pwm系统中,主回路的电力电子器件工作在开关状态,损耗小,装置效率高,而且对交流电网的影响小,没有晶闸管整流器对电网的“污染”,功率因数高,效率高。(4)主电路所需的功率元件少,线路简单,控制方便。目前,受到器件容量的限制,pwm直流调速系统只用于中、小功率的系统。2.1.3 调速系统的性能指标任何一台需要转速控制的设备,其生产工艺对控制性能都有一定的要求。例如,精密机床要求加工精度达到几十微米至几微米;重型机床的进给机构需要在很宽的范围内调速,最高和最低相差近300倍;容量几千kw的初轧机轧辊电动机在不到1秒的时间内就得完成从正转到反转的过程;高速造纸机的抄纸速度达到1000m/min,要求稳速误差小于0.01%。所有这些要求,都可以概括为静态和动态调速指标。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在某一转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响。一、稳态指标运动控制系统稳定运行时的性能指标称为稳态指标,又称静态指标。例如,调速系统稳态运行时调速范围和静差率,位置随动系统的定位精度和速度跟踪精度,张力控制系统的稳态张力误差等等。下面我们具体分析调速系统的稳态指标(1)调速范围d生产机械要求电动机能达到的最高转速nmax和最低转速nmin之比称为调速范围,用字母d表示,即 (23)其中nmax和nmin一般指额定负载时的转速,对于少数负载很轻的机械,例如精密磨床,也可以用实际负载的转速。在设计调速系统时,通常视nmax为电动机的额定转速nnom。(2)静差率s静差率是用来表示负载转矩变化时,转速变化的程度,用系数s来表示。具体是指电动机稳定工作时,在一条机械特性线上,电动机的负载由理想空载增加到额定值时,对应的转速降落与理想空载转速之比,用百分数表示为 (24)显然,机械特性硬度越大,机械特性硬度越大,越小,静差率就越小,转速的稳定度就越高。然而静差率和机械特性硬度又是有区别的。两条相互平行的直线性机械特性的静差率是不同的。对于图23中的线1和线2,它们有相同的转速降落=,但由于。这表明平行机械特性低速时静差率较大,转速的相对稳定性就越差。在1000r/min时降落10r/min,只占1%;在100r/min时也降落10r/min,就占10%;如果只有10r/min,再降落10r/min时,电动机就停止转动,转速全都降落完了。由图23可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。图23 不同转速下的静差率事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。二、 动态指标生产工艺对控制系统动态性能的要求经折算和量化后可以表达为动态性能指标。自动控制系统的动态性能指标包括对给定信号的跟随性能指标和对扰动输入信号的抗扰性能指标。(1)跟随性能指标在给定信号(或称参考输入信号)r(t)的作用下,系统输出量c(t)的变化情况可用跟随性能指标来描述。当给定信号表示方式不同时,输出响应也不一样。通常以输出量的初始值为零,给定信号阶跃变化下的过渡过程作为典型的跟随过程,这时的动态响应又称为阶跃响应。一般希望在阶跃响应中输出量c(t)与其稳态值的偏差越小越好,达到的时间越快越好。常用的阶跃响应跟随性能指标有上升时间,超调量和调节时间:1)上升时间在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值所经过的时间称为上升时间,它表示动态响应的快速性,见图24。图24 表示跟随性能指标的单位阶跃响应曲线2)超调量% 在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量: (25)超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。 3)调节时间调节时间又称过渡过程时间,它衡量系统整个调节过程的快慢。原则上它应该是从给定量阶跃变化起到输出量完全稳定下来为止的时间。对于线性控制系统来说,理论上要到才真正稳定,但是实际系统由于存在非线性等因素并不是这样。因此,一般在阶跃响应曲线的稳态值附近,取(或)的范围作为允许误差带,以响应曲线达到并不再超出该误差带所需的最短时间定义为调节时间,可见图24。(2)抗扰性能指标 控制系统在稳态运行中,如果受到外部扰动(如负载变化、电网电压波动),就会引起输出量的变化。输出量变化多少?经过多长时间能恢复稳定运行?这些问题反映了系统抵抗扰动的能力。一般以系统稳定运行中突加阶跃扰动n以后的过渡过程作为典型的抗扰过程,如图25所示。抗扰性能指标有以下几项: 1)动态降落% 系统稳定运行时,突加一定数值的扰动(如额定负载扰动)后引起转速的最大降落值%叫做动态降落,用输出量原稳态值的百分数来表示。输出量在动态降落后逐渐恢复,达到新的稳态值,(-)是系统在该扰动作用下的稳态降落。动态降落一般都大于稳态降落(即静差)。调速系统突加额定负载扰动时的动态降落称作动态降落%。 2)恢复时间 从阶跃扰动作用开始,到输出量基本上恢复稳态,距新稳态值之差进入某基准量的(或)范围之内所需的时间,定义为恢复时间,其中称为抗扰指标中输出量的基准值。 实际系统中对于各种动态指标的要求各有不同,要根据生产机械的具体要求而定。一般来说,调速系统的动态指标以抗扰性能为主。图25 突加扰动的过渡过程和抗扰性能指标2.2 晶闸管-电动机直流调速控制系统2.2.1 开环直流调速系统存在的问题 在图22所示的v-m系统中和图23所示的pwm系统中,只通过改变触发或驱动电路的控制电压来改变功率变换电路的输出平均电压,达到调节电动机转速的目的,它们都属于开环控制的调速系统,称为开环调速系统。在开环调速系统中,控制电压与输出转速之间只有顺向作用而无反向联系,即控制是单方向进行的,输出转速并不影响控制电压,控制电压直接由给定电压产生。如果生产机械对静差率要求不高,开环调速系统也能实现一定范围内的无级调速,而且开环调速系统结构简单。但是,在实际中许多需要无级调速的生产机械常常对静差率提出较严格的要求,不能允许很大的静差率。例如,由于龙门刨床加工各种材质的工件,刀具切入工件和退出工件时为避免刀具和工件碰坏,有调节速度的要求;又由于毛坯表面不平,加工时负载常有波动,为了保证加工精度和表面光洁度,不允许有较大的速率变化。因此,龙门刨床工作台电气传动系统一般要求调速范围d=2040,静差率s5%,动态速降%10%,快速起、制动。多机架热连轧机,各机架轧辊分别由单独的电动机拖动,钢材在几个机架内同时轧制,为了保证被轧金属的每秒流量相等,不致造成钢材拉断或拱起,各机架出口线速度需保持严格的比例关系。根据以上轧钢工艺要求,一般须使电力拖动系统的调速范围d=10时,静差率s0.2%0.5%,动态速降1%3%,恢复时间。在上述情况下,开环调速系统是不能满足要求的。2.2.2 速度负反馈单闭环调速系统的组成及静特性由于开环调速系统不能满足较高的性能指标要求。根据自动控制原理,为了克服开环系统的缺点,提高系统的控制质量,必须采用带有负反馈的闭环系统。闭环系统的方框图如图2-6所示。在闭环系统中,把系统的输出量通过检测装置(传感器)引向系统的输入端,与系统的输入量进行比较,从而得到反馈量与输入量之间的偏差信号。利用此偏差信号通过控制器(调节器)产生控制作用,自动纠正偏差。因此,带输出量负反馈的闭环控制系统具有提高系统抗扰性,改善控制精度的性能,广泛用于各类自动调节系统中。图26 闭环系统方框图(1)单闭环调速系统的组成对于调速系统来说,输出量是转速,通常引入转速负反馈构成闭环调速系统。在电动机轴上安装一台测速发电动tg,引出与输出量转速成正比的负反馈电压,与转速给定电压进行比较,得到偏差电压,经过放大器a,产生驱动或触发装置的控制电压uct,去控制电动机的转速,这就组成了反馈控制的闭环调速系统。图27所示为采用晶闸管相控整流器供电的闭环调速系统,因为只有一个转速反馈环,所以称为单闭环调速系统。由图可见,该系统由电压比较环节、放大器、晶闸管整流器与触发装置、直流电动机和测速发电机等部分组成。图27 采用转速负反馈的单闭环调速系统(2)转速负反馈单闭环调速系统的静特性下面分析图27所示的闭环调速系统的静特性。为突出主要矛盾,先作如下假定:(1)忽略各种非线性因素,各环节的输入输出关系都是线性的;(2)工作在v-m系统开环机械特性的连续段;(3)忽略直流电源和电位器的等效电阻。这样,图27所示单闭环调速系统中各环节的静态关系为电压比较环节:=-放大器:=晶闸管整流器与触发装置:=v-m系统开环机械特性:n= 测速发电机:= 以上各关系式中:放大器的电压放大系数;晶闸管整流器与触发装置的等效电压放大倍数;转速反馈系数,单位为vmin/r;ce电机反电势系数;根据上述各环节的静态关系可以画出图27所示系统的静态结构图如图28所示。图中各方块中的符号代表该环节的放大系数,或称传递系数。运用结构图的计算方法,可以推导出转速负反馈单闭环调速系统的静特性方程式: (26)式中,k=闭环系统的开环放大系(倍)数。闭环调速系统的静特性表示闭环系统电动机转速与负载电流(或转矩)的稳态关系,它在形式上与开环机械特性相似,但本质上却有很大不同,因此称为“静特性”,以示区别。图28 转速负反馈单闭环调速系统静态结构图 比较开环系统机械特性和闭环系统静特性,可以看出闭环控制的优越性。2.3电流、转速双闭环直流调速系统的理论分析 在工业部门中,有许多生产机械,例如龙门刨床、可逆轧钢机等,由于生产的需要及加工工艺特点,经常处于起动、制动、反转的过渡过程中,起到和制动过程的时间在很大程度上决定了生产机械的生产率,如何缩短这一部分时间,以充分发挥生产机械效能,提高生产率,是转速控制系统首先要解决的问题。为此,在电动机最大电流(转矩)受限制的约束条件下,希望充分发挥电动机的过载能力,在过渡过程中始终保持电流(转矩)为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,在电动机起动到稳态转速后,又让电流(转矩)立即降下来,使转矩与负载转矩相平衡,从而转入稳态运行。这样的理想起动过程如图29所示,起动电流呈方形波,转速是线性增长的。这种在最大电流(转矩)受限制条件下调速系统能得到最快起动过程的控制策略称为“最短时间控制”或“时间最优控制”。为了实现在允许条件下最快起动,关键是要获得一段使电流保持为最大值idm的恒流过程。按照反馈控制规律,采用某个物理量的负反馈可以保持该量基本不变,因此采用电流负反馈应该能得到近似的恒流过程。前面讨论的电流截止负反馈调速系统,在起动过程中具有限流作用,使起动电流不超过电机的最大允许电流值,但并不能保证在整个起动过程中以恒定电流起动。例如对于采用pi调节器的电流截止负反馈闭环调速系统,在稳态时,它要力图使-=0,在电动机转速为零时,其最大电流为=(+)/(因=-)。当转速上升时,增大,起动电流则随之下降,因此实际起动过程如图210所示。显然,它与理想起动过程较大区别,要慢得多。原因是这种系统的转速反馈信号和电流反馈信号在一点进行综合,加到一个调节器的输入端,在起动过程中两种反馈都起作用;正常负载时实现速度调节,电流超过临界值时进行电流调节,达到最大电流后马上又降下来,使电动机转矩也随之减小,因此加速过程必然加长。再者,一个调节器同时要完成两种调节任务,调节器的动态参数也无法保证两种调节过程同时具有良好的动态品质。图29 调速系统理想起动过程图210 带电流截止负反馈单闭环调速系统的起动过程为了在起动过程中只有电流负反馈起作用以保证最大允许恒定电流,不应让它和转速负反馈同时加到一个调节器的输入端;到达稳态转速后希望能使转速恒定,静差尽可能小,应只要转速负反馈,不再靠电流负反馈发挥主要作用。转速、电流双闭环调速系统能够做到既有转速和电流两种负反馈作用,又使它们只能分别在不同的阶段起主要作用。2.3.1 双闭环调速的工作过程和原理双闭环调速系统的工作过程和原理: 电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端产生的偏差信号将随时通过速度调节器、电流调节器来修正触发器的移相电压,使整流桥输出的直流电压相应变化,从而校正和补偿电动机的转速偏差。另外电流调节器的小时间常数, 还能够对因电网波动引起的电动机电枢电流的变化进行快速调节,可以在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度更好地稳定于某一转速下运行。2.3.2 转速、电流双闭环调速系统的组成一、双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图211所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器upe。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。图211 转速、电流双闭环直流调速系统其中:asr-转速调节器 acr-电流调节器 tg-测速发电机 ta-电流互感器 upe-电力电子变换器 -转速给定电压 un-转速反馈电压 -电流给定电压 -电流反馈电压2.3.3转速、电流双环调速系统的静特性图212 双闭环直流调速系统的稳态结构框图分析静特性的关键是掌握pi调节器的稳态特征,一般使存在两种状况:饱和输出达到限幅值,不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和,换句话说,饱和的 调节器暂时隔断了输入和输出的联系,相当于使该调节环开环。当调节器不饱和时,pi的作用使输入偏差电压u在稳态时总为零。 实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。1转速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此,= = = =由第一个关系式可得:= 从而得到图2-12所示静特性曲线的ca段。与此同时,由于asr不饱和,可知,这就是说,ca段特性从理想空载状态的=0一直延续到=。而,一般都是大于额定电流的。这就是静特性的运行段,它是一条水平的特性。2转速调节器饱和这时,asr输出达到限幅值,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成了一个电流无静差的单电流闭环调节系统。稳态时:=其中,最大电流取决于电动机的容许过载能力和拖动系统允许的最大加速度,由上式可得静特性的ab段,它是一条垂直的特性。这样是下垂特性只适合于的情况,因为如果,则,asr将退出饱和状态. 双闭环调速系统的静特性在负载电流小于时表现为转速无静差,这时,转速负反馈起主要的调节作用,但负载电流达到时,对应于转速调节器的饱和输出,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护.这就是采用了两个pi调节器分别形成内、外两个闭环的效果。然而,实际上运算放大器的开环放大系数并不是无穷大,因此,静特性的两段实际上都略有很小的静差,见图213中虚线。图213 双闭环直流调速系统的静特性三、各变量的稳态工作点和稳态参数计算由双闭环直流调速系统的稳态结构图可知,双闭环调速系统在稳态工作时,当两个调节器都不饱和时,各变量之间有以下关系:= =上述关系表明,在稳态工作点上,转速n是由给定电压决定,asr的输出量是由负载电流决定的,而控制电压的大小则同时取决 于n和,或者说,同时取决于和。pi调节器输出量在动态过程中决定于输入量的积分,到达稳态时,输入为零,输出的稳态值与输入无关,而是由它后面环节的需要决定的。后面需要pi调节器提供多么大的输出值,它就能提供多少,直到饱和为止。鉴于这一特点,双闭环调速系统的稳态参数计算与单闭环有静差系统完全不同,而是和无静差系统的稳态计算相似,即根据各调节器的给定与反馈值计算有关的反馈系数。转速反馈系数:=/;电流反馈系数:= /;两个给定电压的最大值、由设计者给定,受运算放大器允许输入电压和稳压电源的限制。2.4 转速、电流双闭环直流调速系统的数学模型和动态性能分析2.4.1 转速、电流双闭环直流调速系统的数学模型的建立双闭环直流调速系统数学模型的建立涉及到可控硅触发器和整流器的相关内容,这里仅作简单介绍。全控式整流在稳态下,触发器控制电压与整流输出电压的关系为:其中:a-整流器系数; -整流器输入交流电压; -整流器触发角; -触发器移项控制电压;k-触发器移项控制斜率;整流与触发关系为余弦,工
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年微电网稳定性控制与优化运行能源利用效率研究报告
- 2025年中国貂油养发焗油膏行业市场发展前景及发展趋势与投资战略研究报告
- 2024年中国绿化苗木行业调查报告
- 医疗器械台的项目投资可行性研究分析报告(2024-2030版)
- 2025年中国血压计行业市场深度分析及发展前景预测报告
- 2024-2030全球北美乔柏木行业调研及趋势分析报告
- 2025年中国液化石油气钢瓶行业全景评估及投资规划建议报告
- 2019-2025年中国现制茶饮市场前景预测及投资规划研究报告
- 2025-2030年中国海虹肉项目投资可行性研究分析报告
- 阿魏酸哌嗪项目投资可行性研究分析报告(2024-2030版)
- 2025年入党积极分子培训结业测试题及答案
- 人教版(2024)七年级下册生物期末复习重点知识点提纲
- 2025年中考语文二轮复习:标点符号 专题练习题(含答案解析)
- 跌倒坠床防范试题及答案
- 2024-2025学年人教版(2024)初中英语七年级下册(全册)知识点归纳
- XXX社区居委会、业主委员会和物业管理机构三方联席会议制度
- 三伏贴不良反应应急预案
- 简阳市2024-2025学年五年级数学第二学期期末统考模拟试题含答案
- 2025年广东省佛山市中考英语一模试卷
- 防尘网施工方案
- 垃圾发电行业安全培训
评论
0/150
提交评论