




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。【创新方案】2017届高考数学一轮复习 第四章 三角函数与解三角形 第六节 正弦定理和余弦定理课后作业 理一、选择题1(2016兰州模拟)在锐角ABC中,角A,B,C的对边分别为a,b,c,若b2asin B,则A()A30 B45 C60 D752在ABC中,角A,B,C所对的边分别是a,b,c,若c1,B45,cos A,则b()A. B. C. D.3钝角三角形ABC的面积是,AB1,BC,则AC()A5 B. C2 D14(2016渭南模拟)在ABC中,若a2b2bc且2,则A()A. B. C. D.5已知ABC的内角A,B,C的对边分别为a,b,c,且,则B()A. B. C. D.二、填空题6在ABC中,若b2,A120,三角形的面积S,则三角形外接圆的半径为_7(2015广东高考)设ABC的内角A,B,C的对边分别为a,b,c.若a,sin B,C,则b_.8(2016昆明模拟)在ABC中,B120,AB,A的角平分线AD,则AC_.三、解答题9(2015安徽高考)在ABC中,A,AB6,AC3,点D在BC边上,ADBD,求AD的长10(2016太原模拟)已知a,b,c分别是ABC的内角A,B,C所对的边,且c2,C.(1)若ABC的面积等于,求a,b;(2)若sin Csin(BA)2sin 2A,求A的值1已知a,b,c分别为ABC三个内角A,B,C的对边,a2,且(2b)(sin Asin B)(cb)sin C,则ABC面积的最大值为()A. B. C. D22在ABC中,内角A,B,C的对边分别为a,b,c,若ABC的面积为S,且2S(ab)2c2,则tan C等于()A. B. C D3在ABC中,内角A,B,C的对边分别为a,b,c,且满足sin2Asin2Bsin Asin Bsin2C,则的取值范围为_4在ABC中,A,B,C所对的边分别为a,b,c,且asin A(bc)sin B(cb)sin C.(1)求角A的大小;(2)若a,cos B,D为AC的中点,求BD的长 答 案一、选择题1解析:选A因为在锐角ABC中,b2asin B,由正弦定理得,sin B2sin Asin B,所以sin A,又0A90,所以A30.2解析:选C因为cos A,所以sin A,所以sin Csin180(AB)sin(AB)sin Acos Bcos Asin Bcos 45sin 45.由正弦定理,得bsin 45.3解析:选B由题意可得ABBCsin B,又AB1,BC,所以sin B,所以B45或B135.当B45时,由余弦定理可得AC1,此时ACAB1,BC,易得A90,与“钝角三角形”条件矛盾,舍去所以B135.由余弦定理可得AC.4解析:选A因为2,故2,即c2b,cos A,所以A.5解析:选C根据正弦定理:2R,得,即a2c2b2ac,得cos B,故B.二、填空题6解析:由面积公式,得Sbcsin A,代入得c2,由余弦定理得a2b2c22bccos A2222222cos 12012,故a2,由正弦定理,得2R,解得R2.答案:27解析:在ABC中,sin B,0B,B或B.又BC,C,B,A.,b1.答案:18解析:如图,在ABD中,由正弦定理,得sinADB.由题意知0ADB60,所以ADB45,则BAD180BADB15,所以BAC2BAD30,所以C180BACB30,所以BCAB,于是由余弦定理,得AC.答案:三、解答题9解:设ABC的内角BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2b2c22bccosBAC(3)262236cos1836(36)90,所以a3.又由正弦定理得sin B,由题设知0B,所以cos B .在ABD中,因为ADBD,所以ABDBAD,所以ADB2B,故由正弦定理得AD.10解:(1)c2,C,由余弦定理得4a2b22abcosa2b2ab.ABC的面积等于,absin C,ab4,联立解得a2,b2.(2)sin Csin(BA)2sin 2A,sin(BA)sin(BA)4sin Acos A,sin Bcos A2sin Acos A,当cos A0时,A;当cos A0时,sin B2sin A,由正弦定理得b2a,联立解得a,b,b2a2c2.C,A.综上所述,A或A.1解析:选C由正弦定理得(2b)(ab)(cb)c,即(ab)(ab)(cb)c,即b2c2a2bc,所以cos A.又A(0,),所以A,又b2c2a2bc2bc4,即bc4,故SABCbcsin A4,当且仅当bc2时,等号成立,则ABC面积的最大值为.2解析:选C因为2S(ab)2c2a2b2c22ab,所以结合三角形的面积公式与余弦定理,得absin C2abcos C2ab,即sin C2cos C2,所以(sin C2cos C)24,4,所以4,解得tan C或tan C0(舍去),故选C.3解析:由正弦定理得a2b2c2ab,由余弦定理得cos C,C.由正弦定理得(sin Asin B),又AB,BA,sin Asin Bsin Asinsin.又0A,A,sin Asin B,.答案:4解:(1)因为asin A(bc)sin B(cb)sin C,由正弦定理得a2(bc)b(cb)c,整理得a2b2c22bc,由余弦定理得cos A,因为A(0,),所以A.(2)由cos B,得sin B,所以cos Ccos(AB)cos(AB).由正弦定理得b2,所以CDA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业管理小区能源管理系统协议
- 有趣的户外活动记事+活动细节描写5篇范文
- 在线课程教育培训协议
- 银行入行考试试题及答案
- 银行出纳考试试题及答案
- 六一剪发活动方案
- 六一墙纸活动方案
- 六一幼儿花展活动方案
- 六一操场活动方案
- 六一汉服童话活动方案
- 11ZJ311地下室防水图集
- 土地整治实施操作手册
- 深圳市引导基金管理办法
- 10以内连加练习题完整版51
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 机场建造行业投资机会与风险识别及应对策略报告
- 统编版语文一年级下册第四单元整体解读
- 重大事故隐患判定标准与相关事故案例培训课件
- 环境检测实验室分析人员绩效考核方案
- (正式版)CB∕T 4548-2024 船舶行业企业相关方安全管理要求
- CJT 166-2014 建设事业集成电路(IC)卡应用技术条件
评论
0/150
提交评论