已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015-2016学年辽宁省抚顺市九年级(下)第三次质检数学试卷一、选择题1如图所示的几何体的主视图是()abcd2如图,在rtabc中,c=90,ac=4,bc=3,则sinb的值等于()abcd3袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()a这个球一定是黑球b摸到黑球、白球的可能性的大小一样c这个球可能是白球d事先能确定摸到什么颜色的球4一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()abcd5关于x的一元二次方程(m2)x2+2x+1=0有实数根,则m的取值范围是()am3bm3cm3且m2dm3且m26面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()abcd7已知反比例函数y=的图象上有a(x1,y1)、b(x2,y2)两点,当x1x20时,y1y2则m的取值范围是()am0bm0cmdm8如图,abc为o的内接三角形,aob=100,则acb的度数为()a100b130c150d1609如图,在abcd中,e是ab的中点,ec交bd于点f,则bef与dcf的面积比为()abcd10如图,正方形abcd和正aef都内接于o,ef与bc、cd分别相交于点g、h,则的值是()abcd2二、填空题11从1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是12已知二次函数y=x2+bx+c的图象经过点(1,0),(4,0),则c=13某小区2014年底绿化面积为1000平方米,计划2016年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是14如图是一几何体的三视图,则这个几何体的全面积是15如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要mm16如图,rtabc中,acb=90,a=30,bc=2将abc绕点c按顺时针方向旋转一定角度后得edc,点d在ab边上,斜边de交ac于点f,则图中阴影部分面积为17如图,矩形abcd中,ad=2,ab=5,p为cd边上的动点,当adp与bcp相似时,dp=18如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设b2d1c1的面积为s1,b3d2c2的面积为s2,bn+1dncn的面积为sn,则s1=,sn=(用含n的式子表示)三、解答题(第19题10分,第20题12分,共22分)19如图,方格纸中每个小正方形的边长都是单位1,abc在平面直角坐标系中的位置如图所示(1)将abc绕点o顺时针方向旋转90后得a1b1c1,画出a1b1c1并直接写出点c1的坐标为;(2)以原点o为位似中心,在第四象限画一个a2b2c2,使它与abc位似,并且a2b2c2与abc的相似比为2:120(1)计算:sin30+3tan60cos245(2)如图,在rtabc中,c=90,abc=75,d在ac上,dc=6,dbc=60,求ad的长四、21我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y()随时间x(小时)变化的函数图象,其中bc段是双曲线y=的一部分请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?22如图,abc内接于o,b=60,cd是o的直径,点p是cd延长线上的一点,且ap=ac(1)求证:pa是o的切线;(2)若o的半径为3,求阴影部分的面积五、(本题12分)23如图,某数学活动小组要测量楼ab的高度,楼ab在太阳光的照射下在水平面的影长bc为6米,在斜坡ce的影长cd为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡ce的坡度为1:2.4,求楼ab的高度(坡度为铅直高度与水平宽度的比)六、(本题12分)24某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元(1)求y乙(万元)与x(吨)之间的函数关系式(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和w(万元)与t(吨)之间的函数关系式并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?七、(本题12分)25如图,c为线段be上的一点,分别以bc和ce为边在be的同侧作正方形abcd和正方形cefg,m、n分别是线段af和gd的中点,连接mn(1)线段mn和gd的数量关系是,位置关系是;(2)将图中的正方形cefg绕点c逆时针旋转90,其他条件不变,如图,(1)的结论是否成立?说明理由;(3)已知bc=7,ce=3,将图中的正方形cefg绕点c旋转一周,其他条件不变,直接写出mn的最大值和最小值八、(本题14分)26如图,直线y=x+3与x轴交于a点,与y轴交于b点,对称轴为x=1的抛物线经过a、b两点,与x轴的另一个交点为c,抛物线与对称轴交于d点,连接ce、cb、bd(1)求抛物线的解析式;(2)求证:bdce;(3)在直线ab上是否存在点p,使以b、d、p为顶点的三角形与bce相似?若存在,直接写出点p的坐标;若不存在,请说明理由2015-2016学年辽宁省抚顺市房申中学九年级(下)第三次质检数学试卷参考答案与试题解析一、选择题1如图所示的几何体的主视图是()abcd【考点】简单组合体的三视图【专题】常规题型【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【解答】解:几何体的主视图是:故选:a【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图2如图,在rtabc中,c=90,ac=4,bc=3,则sinb的值等于()abcd【考点】锐角三角函数的定义【分析】根据勾股定理,可得ab的长,根据在直角三角形中,锐角的正弦为对边比斜边,可得答案【解答】解:在rtabc中,由勾股定理,得ab=5sinb=,故选:c【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边3袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()a这个球一定是黑球b摸到黑球、白球的可能性的大小一样c这个球可能是白球d事先能确定摸到什么颜色的球【考点】可能性的大小【分析】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案【解答】解:布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,a、这个球一定是黑球,错误;b、摸到黑球、白球的可能性的大小一样,错误;c、这个球可能是白球,正确;d、事先能确定摸到什么颜色的球,错误;故选:c【点评】此题考查了可能性大小以及概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件a出现m种结果,那么事件a的概率p(a)=4一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()abcd【考点】概率公式【分析】由一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,直接利用概率公式求解即可求得答案【解答】解:一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,你抬头看信号灯时是绿灯的概率是: =故选c【点评】此题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比5关于x的一元二次方程(m2)x2+2x+1=0有实数根,则m的取值范围是()am3bm3cm3且m2dm3且m2【考点】根的判别式;一元二次方程的定义【分析】根据一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac的意义得到m20且0,即224(m2)10,然后解不等式组即可得到m的取值范围【解答】解:关于x的一元二次方程(m2)x2+2x+1=0有实数根,m20且0,即224(m2)10,解得m3,m的取值范围是 m3且m2故选:d【点评】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根6面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()abcd【考点】反比例函数的应用;反比例函数的图象【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限【解答】解: xy=4,xy=4,y=(x0,y0),当x=1时,y=4,当x=4时,y=1,故选:c【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限7已知反比例函数y=的图象上有a(x1,y1)、b(x2,y2)两点,当x1x20时,y1y2则m的取值范围是()am0bm0cmdm【考点】二次函数图象上点的坐标特征【专题】计算题【分析】根据反比例函数图象上点的坐标特征得x1=,x2=,而x1x20时,y1y2,则25m0,然后解不等式即可【解答】解:反比例函数y=的图象上有a(x1,y1)、b(x2,y2),x1=,x2=,x1x20时,y1y2,25m0,m故选d【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式8如图,abc为o的内接三角形,aob=100,则acb的度数为()a100b130c150d160【考点】圆周角定理【分析】首先在优弧ab上取点d,连接ad,bd,然后由圆周角定理,求得d的度数,又由圆的内接四边形的性质,求得acb的度数【解答】解:在优弧ab上取点d,连接ad,bd,aob=100,d=aob=50,acb=180d=130故选b【点评】此题考查了圆周角定理以及圆的内接四边形的性质注意准确作出辅助线是解此题的关键9如图,在abcd中,e是ab的中点,ec交bd于点f,则bef与dcf的面积比为()abcd【考点】相似三角形的判定与性质;平行四边形的性质【专题】计算题【分析】先根据平行四边形的性质得abcd,ab=cd,而e是ab的中点,be=ab=cd,再证明befdcf,然后根据相似三角形的性质可计算的值【解答】解:四边形abcd为平行四边形,abcd,ab=cd,e是ab的中点,be=ab=cd;becd,befdcf,=()2=故选c【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时主要利用相似比计算相应线段的长10如图,正方形abcd和正aef都内接于o,ef与bc、cd分别相交于点g、h,则的值是()abcd2【考点】正多边形和圆【专题】压轴题【分析】首先设o的半径是r,则of=r,根据ao是eaf的平分线,求出cof=60,在rtoif中,求出fi的值是多少;然后判断出oi、ci的关系,再根据ghbd,求出gh的值是多少,再用ef的值比上gh的值,求出的值是多少即可【解答】解:如图,连接ac、bd、of,设o的半径是r,则of=r,ao是eaf的平分线,oaf=602=30,oa=of,ofa=oaf=30,cof=30+30=60,fi=rsin60=,ef=,ao=2oi,oi=,ci=r=,=,即则的值是故选:c【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:中心:正多边形的外接圆的圆心叫做正多边形的中心正多边形的半径:外接圆的半径叫做正多边形的半径中心角:正多边形每一边所对的圆心角叫做正多边形的中心角边心距:中心到正多边形的一边的距离叫做正多边形的边心距二、填空题11从1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是【考点】列表法与树状图法【专题】计算题【分析】先画树状图展示所有,12种等可能的结果数,再找出两个数和为负数的结果数,然后根据概率公式计算【解答】解:画树状图为:,共有12种等可能的结果数,其中两个数和为负数的结果数为2,所以两个数和为负数的概率=故答案为【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件a或b的结果数目m,求出概率12已知二次函数y=x2+bx+c的图象经过点(1,0),(4,0),则c=4【考点】待定系数法求二次函数解析式【专题】计算题【分析】由于已知抛物线与x轴的交点坐标,则可用交点式表示解析式为y=(x+1)(x4),然后变形为一般式即可得到c的值【解答】解:抛物线的解析式为y=(x+1)(x4),即y=x23x4,所以c=4故答案为4【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解13某小区2014年底绿化面积为1000平方米,计划2016年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是20%【考点】一元二次方程的应用【专题】增长率问题【分析】一般用增长后的量=增长前的量(1+增长率),如果设人均年收入的平均增长率为x,根据题意即可列出方程【解答】解:设平均增长率为x,根据题意可列出方程为:1000(1+x)2=1440解得:(1+x)2=1.44.1+x=1.2所以x1=0.2,x2=2.2(舍去)故x=0.2=20%答:这个增长率为20%,故答案为:20%【点评】本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键14如图是一几何体的三视图,则这个几何体的全面积是33【考点】圆锥的计算;由三视图判断几何体【分析】首先确定几何体的形状,根据三视图中提供的数据即可计算【解答】解:几何体是圆锥,底面直径是6,则底面周长是6,母线长是8则侧面积是:68=24,底面面积是:9则全面积是:24+9=33故答案为:33【点评】本题主要考查了三视图,以及圆锥的侧面积的计算,正确根据三视图确定圆锥的底面直径以及母线长是解题的关键15如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要12mm【考点】正多边形和圆【分析】根据题意,即是求该正六边形的边心距的2倍构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解【解答】解:如图所示:设正多边形的中心是o,其一边是ab,aob=boc=60,oa=ob=ab=oc=bc,四边形abco是菱形,ab=12mm,aob=60,cosbac=,am=12=6,oa=oc,且aob=boc,am=mc=ac,ac=2am=12mm故答案为:12【点评】本题考查了正多边形和圆的知识、三角函数;构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行计算是解决问题的关键16如图,rtabc中,acb=90,a=30,bc=2将abc绕点c按顺时针方向旋转一定角度后得edc,点d在ab边上,斜边de交ac于点f,则图中阴影部分面积为【考点】旋转的性质【分析】先根据已知条件求出ac的长及b的度数,再根据图形旋转的性质及等边三角形的判定定理判断出bcd的形状,进而得出dcf的度数,由直角三角形的性质可判断出df是abc的中位线,由三角形的面积公式即可得出结论【解答】解:abc是直角三角形,acb=90,a=30,bc=2,b=60,ab=2bc=4,ac=2,edc是abc旋转而成,bc=cd=bd=ab=2,b=60,bcd是等边三角形,bcd=60,dcf=30,dfc=90,即deac,debc,bd=ab=2,df是abc的中位线,df=bc=2=1,cf=ac=2=,s阴影=dfcf=【点评】考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等17如图,矩形abcd中,ad=2,ab=5,p为cd边上的动点,当adp与bcp相似时,dp=1或4或2.5【考点】相似三角形的判定;矩形的性质【专题】分类讨论【分析】需要分类讨论:apdpbc和padpbc,根据该相似三角形的对应边成比例求得dp的长度【解答】解:当apdpbc时, =,即=,解得:pd=1,或pd=4;当padpbc时, =,即=,解得:dp=2.5综上所述,dp的长度是1或4或2.5故答案是:1或4或2.5【点评】本题考查了矩形的性质,相似三角形的判定与性质对于动点问题,需要分类讨论,以防漏解18如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设b2d1c1的面积为s1,b3d2c2的面积为s2,bn+1dncn的面积为sn,则s1=,sn=(用含n的式子表示)【考点】相似三角形的判定与性质;三角形的面积;等腰直角三角形【专题】压轴题;规律型【分析】连接b1、b2、b3、b4、b5点,显然它们共线且平行于ac1,依题意可知b1c1b2是等腰直角三角形,知道b1b2d1与c1ad1相似,求出相似比,根据三角形面积公式可得出s1,同理:b2b3:ac2=1:2,所以b2d2:d2c2=1:2,所以s2=,同样的道理,即可求出s3,s4sn【解答】解:n+1个边长为1的等腰三角形有一条边在同一直线上,sab1c1=11=,连接b1、b2、b3、b4、b5点,显然它们共线且平行于ac1b1c1b2=90a1b1b2c1b1c1b2是等腰直角三角形,且边长=1,b1b2d1c1ad1,b1d1:d1c1=1:1,s1=,故答案为:;同理:b2b3:ac2=1:2,b2d2:d2c2=1:2,s2=,同理:b3b4:ac3=1:3,b3d3:d3c3=1:3,s3=,s4=,sn=故答案为:【点评】本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力三、解答题(第19题10分,第20题12分,共22分)19如图,方格纸中每个小正方形的边长都是单位1,abc在平面直角坐标系中的位置如图所示(1)将abc绕点o顺时针方向旋转90后得a1b1c1,画出a1b1c1并直接写出点c1的坐标为(2,3);(2)以原点o为位似中心,在第四象限画一个a2b2c2,使它与abc位似,并且a2b2c2与abc的相似比为2:1【考点】作图-位似变换;作图-旋转变换【专题】作图题【分析】(1)利用网格特点和旋转的性质画出点a、b、c的对应点a1、b1、c1,从而得到a1b1c1;(2)利用关于原点中心对称的点的特征特征,把a、b、c点的横纵坐标都乘以2得到a2、b2、c2的坐标,然后描点即可得到a2b2c2【解答】解:(1)如图,a1b1c1为所作,点c1的坐标为(2,3);(2)如图,a2b2c2为所作故答案为(2,3)【点评】本题考查了位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形也考查了旋转变换20(1)计算:sin30+3tan60cos245(2)如图,在rtabc中,c=90,abc=75,d在ac上,dc=6,dbc=60,求ad的长【考点】解直角三角形;特殊角的三角函数值【分析】(1)将特殊角的三角函数值代入求解;(2)根据三角函数的定义和直角三角形的解法解答即可【解答】解:(1)sin30+3tan60cos245=;(2)rtdbc 中,sindbc=,sin60=,bd=4,abd=abcdbc=7560=15,a+abc=90,a=90abc=9075=15,abd=a,ad=bd=4【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值四、21我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y()随时间x(小时)变化的函数图象,其中bc段是双曲线y=的一部分请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?【考点】反比例函数的应用;一次函数的应用【分析】(1)需要分类讨论:ad段为直线;ab段平行于x轴的直线;bc段为双曲线的一部分,利用待定系数法求解即可;(2)把x=16代入反比例函数解析式进行解答【解答】解:(1)设ad解析式是y=mx+n(m0),则,解得,y=5x+8双曲线y=经过b(12,18),18=,解得k=216y=综上所述,y与x的函数解析式为:y=;(2)当x=16时,y=13.5答:当x=16时,大棚内的温度约为13.5度【点评】此题主要考查了反比例函数的应用,求函数解析式时,一定要结合图形,对自变量x的取值范围进行分类讨论,以防漏解或错解22如图,abc内接于o,b=60,cd是o的直径,点p是cd延长线上的一点,且ap=ac(1)求证:pa是o的切线;(2)若o的半径为3,求阴影部分的面积【考点】切线的判定;扇形面积的计算【分析】(1)连接oa,如图,先根据圆周角定理得到aoc=2b=120,则aop=60,再计算出oca的度数,接着利用ap=ac得到p=aco=30,然后根据三角形内角和可计算出pao=90,于是利用切线的判定定理可判断pa是o的切线;(2)在rtaop中,利用含30度的直角三角形三边的关系得到po=2oa=6,pa=oa=3,然后根据三角形面积公式和扇形面积公式,利用s阴影部分=spaos扇形oad进行计算即可【解答】(1)证明:连接oa,如图,aoc=2b=120,aop=60,oa=oc,oca=oac=(180120)=30,ap=ac,p=aco=30,pao=1803060=90,oapa,pa是o的切线;(2)解:在rtaop中,po=2oa=6,pa=oa=3,s阴影部分=spaos扇形oad=33=【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可也考查了扇形面积公式五、(本题12分)23如图,某数学活动小组要测量楼ab的高度,楼ab在太阳光的照射下在水平面的影长bc为6米,在斜坡ce的影长cd为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡ce的坡度为1:2.4,求楼ab的高度(坡度为铅直高度与水平宽度的比)【考点】解直角三角形的应用-坡度坡角问题【分析】作dnab,垂足为n,作cmdn,垂足为m,设cm=5x,根据坡度的概念求出cm、dm,根据平行线的性质列出比例式,计算即可【解答】解:作dnab,垂足为n,作cmdn,垂足为m,则cm:md=1:2.4=5:12,设cm=5x,则md=12x,由勾股定理得cd=13x=13x=1cm=5,md=12,四边形bcmn为矩形,mn=bc=6,bn=cm=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,an:dn=1.5:1.35=10:9,9an=10dn=10(6+12)=180,an=20,ab=205=15,答:楼ab的高度为15米【点评】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键,注意平行线的性质的应用六、(本题12分)24某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元(1)求y乙(万元)与x(吨)之间的函数关系式(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和w(万元)与t(吨)之间的函数关系式并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【考点】二次函数的应用【分析】(1)根据题意列出二元一次方程组,求出a、b的值即可求出函数关系式的解(2)已知w=y甲+y乙=0.3(10t)+(0.1t2+1.5t),用配方法化简函数关系式即可求出w的最大值【解答】解:(1)由题意,得:解得y乙=0.1x2+1.5x(2)w=y甲+y乙=0.3(10t)+(0.1t2+1.5t)w=0.1t2+1.2t+3w=0.1(t6)2+6.6t=6时,w有最大值为6.6106=4(吨)答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元【点评】本题考查学生利用二次函数解决实际问题的能力,注意二次函数的最大值往往要通过顶点坐标来确定七、(本题12分)25如图,c为线段be上的一点,分别以bc和ce为边在be的同侧作正方形abcd和正方形cefg,m、n分别是线段af和gd的中点,连接mn(1)线段mn和gd的数量关系是mn=dg,位置关系是mndg;(2)将图中的正方形cefg绕点c逆时针旋转90,其他条件不变,如图,(1)的结论是否成立?说明理由;(3)已知bc=7,ce=3,将图中的正方形cefg绕点c旋转一周,其他条件不变,直接写出mn的最大值和最小值【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;正方形的性质;梯形中位线定理;相似形综合题【专题】探究型【分析】(1)连接fn并延长,与ad交于点s,如图,易证sdnfgn,则有ds=gf,sn=fn,然后运用三角形中位线定理就可解决问题;(2)过点m作mtdc于t,过点m作mrbc于r,连接fc、md、mg,如图,根据平行线分线段成比例可得br=gr=bg,dt=et=de,根据梯形中位线定理可得mr=(fg+ab),mt=(ef+ad),从而可得mr=mt,rg=td,由此可得mrgmtd,则有mg=md,rmg=tmd,则有rmt=gmd,进而可证到dmg是等腰直角三角形,然后根据等腰三角形的性质和直角三角形斜边上的中线等于斜边的一半,就可解决问题;(3)连接gm到点p,使得pm=gm,延长gf、ad交于点q,连接ap,dp,dm如图,易证apdcgd,则有pd=dg,根据等腰三角形的性质可得dmpg,根据直角三角形斜边上的中线等于斜边的一半可得mn=dg要求mn的最大值和最小值,只需求dg的最大值和最小值,由gc=ce=3可知点g在以点c为圆心,3为半径的圆上,再由dc=bc=7,就可求出dg的最大值和最小值【解答】解:(1)连接fn并延长,与ad交于点s,如图四边形abcd和四边形efgc都是正方形,d=90,ad=dc,gc=gf,adbegf,dsn=gfn在sdn和fgn中,sdnfgn,ds=gf,sn=fnam=fm,mnas,mn=as,mng=d=90,mn=(adds)=(dcgf)=(dcgc)=dg故答案为mn=dg,mndg;(2)(1)的结论仍然成立理由:过点m作mtdc于t,过点m作mrbc于r,连接fc、md、mg,如图,则a、f、c共线,mrfgab,mtefadam=fm,br=gr=bg,dt=et=de,mr=(fg+ab),mt=(ef+ad)四边形abcd和四边形efgc都是正方形,fg=gc=ec=ef,ab=bc=dc=ad,mr=mt,rg=td在mrg和mtd中,mrgmtd,mg=md,rmg=tmd,rmt=gmdmrc=rct=mtc=90,四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国餐饮行业发展展望及投资策略报告
- iqc检验员年终工作总结(34篇)
- 2025年文学常识试卷题库及答案
- 2025年新奥能源测评题库及答案
- 2025年造价电算化考试题及答案
- 中暑应急预案风险提示(3篇)
- 成人抽象智力测试题及答案
- C语言程序基础设计 答案
- 小学程序思维测试题及答案
- 智能家电市场增长驱动力-第1篇-洞察与解读
- 中国武侠电影研究知到课后答案智慧树章节测试答案2025年春云南艺术学院
- 2025年河南机电职业学院单招职业技能测试题库及参考答案
- 火灾爆炸事故专项的应急预案
- 外国近现代雕塑艺术欣赏
- 《安全文明施工标准化图集》
- 大学美育(河南财经政法大学)知到智慧树章节测试课后答案2024年秋河南财经政法大学
- 互联网信息审核员考试题及答案
- 2025年中远海运集团招聘笔试参考题库含答案解析
- 【MOOC】大学生心理健康-厦门大学 中国大学慕课MOOC答案
- 品管圈PDCA案例-中医医院减少住院患者艾灸烫伤率医院改善成果汇报
- 基于“双减”背景下的小学语文作业设计探究
评论
0/150
提交评论