2011年中考二次函数经典综合解答题4.docx_第1页
2011年中考二次函数经典综合解答题4.docx_第2页
2011年中考二次函数经典综合解答题4.docx_第3页
2011年中考二次函数经典综合解答题4.docx_第4页
2011年中考二次函数经典综合解答题4.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(2011乐山)已知顶点为a(1,5)的抛物线y=ax2+bx+c经过点b(5,1)(1)求抛物线的解析式;(2)如图(1),设c,d分别是x轴、y轴上的两个动点,求四边形abcd的周长;(3)在(2)中,当四边形abcd的周长最小时,作直线cd设点p(x,y)(x0)是直线y=x上的一个动点,q是op的中点,以pq为斜边按图(2)所示构造等腰直角三角形prq当pbr与直线cd有公共点时,求x的取值范围;在的条件下,记pqr与cod的公共部分的面积为s求s关于x的函数关系式,并求s的最大值2、(2011兰州)如图所示,在平面直角坐标系xoy中,正方形oabc的边长为2cm,点a、c分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点a、b和d(4,23)(1)求抛物线的解析式(2)如果点p由点a出发沿ab边以2cm/s的速度向点b运动,同时点q由点b出发沿bc边以1cm/s的速度向点c运动,当其中一点到达终点时,另一点也随之停止运动设s=pq2(cm2)试求出s与运动时间t之间的函数关系式,并写出t的取值范围;当s取54时,在抛物线上是否存在点r,使得以p、b、q、r为顶点的四边形是平行四边形?如果存在,求出r点的坐标;如果不存在,请说明理由(3)在抛物线的对称轴上求点m,使得m到d、a的距离之差最大,求出点m的坐标3、(2011金华)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形oabc,相邻两边oa和oc分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a0)过矩形顶点b、c(1)当n=1时,如果a=1,试求b的值;(2)当n=2时,如图2,在矩形oabc上方作一边长为1的正方形efmn,使ef在线段cb上,如果m,n两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形oabc绕点o顺时针旋转,使得点b落到x轴的正半轴上,如果该抛物线同时经过原点o试求当n=3时a的值;直接写出a关于n的关系式4、(2011江西)已知:抛物线y=a(x2)2+b(ab0)的顶点为a,与x轴的交点为b,c(点b在点c的左侧)(1)直接写出抛物线对称轴方程;(2)若抛物线经过原点,且abc为直角三角形,求a,b的值;(3)若d为抛物线对称轴上一点,则以a,b,c,d为顶点的四边形能否为正方形?若能,请写出a,b满足的关系式;若不能,说明理由5、(2011江西)将抛物沿c1:y=3x2+3沿x轴翻折,得拋物线c2,如图所示(1)请直接写出拋物线c2的表达式(2)现将拋物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为m,与x轴的交点从左到右依次为a,b;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为n,与x轴交点从左到右依次为d,e当b,d是线段ae的三等分点时,求m的值;在平移过程中,是否存在以点a,n,e,m为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由6、(2011江汉区)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为a(3,0)、b(1,0),过顶点c作chx轴于点h(1)直接填写:a=_,b=_,顶点c的坐标为_;(2)在y轴上是否存在点d,使得acd是以ac为斜边的直角三角形?若存在,求出点d的坐标;若不存在,说明理由;(3)若点p为x轴上方的抛物线上一动点(点p与顶点c不重合),pqac于点q,当pcq与ach相似时,求点p的坐标 7、(2011嘉兴)已知直线y=kx+3(k0)分别交x轴、y轴于a、b两点,线段oa上有一动点p由原点o向点a运动,速度为每秒1个单位长度,过点p作x轴的垂线交直线ab于点c,设运动时间为t秒(1)当k=1时,线段oa上另有一动点q由点a向点o运动,它与点p以相同速度同时出发,当点p到达点a时两点同时停止运动(如图1)直接写出t=1秒时c、q两点的坐标;若以q、c、a为顶点的三角形与aob相似,求t的值(2)当k=34时,设以c为顶点的抛物线y=(x+m)2+n与直线ab的另一交点为d(如图2),求cd的长;设cod的oc边上的高为h,当t为何值时,h的值最大?15、(2011济南)如图,矩形oabc中,点o为原点,点a的坐标为(0,8),点c的坐标为(6,0)抛物线y=49x2+bx+c经过a、c两点,与ab边交于点d(1)求抛物线的函数表达式;(2)点p为线段bc上一个动点(不与点c重合),点q为线段ac上一个动点,aq=cp,连接pq,设cp=m,cpq的面积为s求s关于m的函数表达式,并求出m为何值时,s取得最大值;当s最大时,在抛物线y=49x2+bx+c的对称轴l上若存在点f,使fdq为直角三角形,请直接写出所有符合条件的f的坐标;若不存在,请说明理由 8、(2011黄石)已知二次函数y=x22mx+4m8(1)当x2时,函数值y随x的增大而减小,求m的取值范围(2)以抛物线y=x22mx+4m8的顶点a为一个顶点作该抛物线的内接正三角形amn(m,n两点在拋物线上),请问:amn的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由(3)若抛物线y=x22mx+4m8与x轴交点的横坐标均为整数,求整数m的值9、(2011淮安)如图已知二次函数y=x2+bx+3的图象与x轴的一个交点为a(4,0),与y轴交于点b(1)求此二次函数关系式和点b的坐标;(2)在x轴的正半轴上是否存在点p使得pab是以ab为底边的等腰三角形?若存在,求出点p的坐标;若不存在,请说明理由10、(2011湖州)如图1,已知正方形oabc的边长为2,顶点a、c分别在x、y轴的正半轴上,m是bc的中点p(0,m)是线段oc上一动点(c点除外),直线pm交ab的延长线于点d(1)求点d的坐标(用含m的代数式表示);(2)当apd是等腰三角形时,求m的值;(3)设过p、m、b三点的抛物线与x轴正半轴交于点e,过点o作直线me的垂线,垂足为h(如图2),当点p从点o向点c运动时,点h也随之运动请直接写出点h所经过的路径长(不必写解答过程)11、(2011呼和浩特)已知抛物线y1=x2+4x+1的图象向上平移m个单位(m0)得到的新抛物线过点(1,8)(1)求m的值,并将平移后的抛物线解析式写成y2=a(xh)2+k的形式;(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在3x32时对应的函数值y的取值范围;(3)设一次函数y3=nx+3(n0),问是否存在正整数n使得(2)中函数的函数值y=y3时,对应的x的值为1x0,若存在,求出n的值;若不存在,说明理由 12、(2011衡阳)已知抛物线y=12x2mx+2m72(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点c,直线y=x1与抛物线交于a、b两点,并与它的对称轴交于点d抛物线上是否存在一点p使得四边形acpd是正方形?若存在,求出点p的坐标;若不存在,说明理由;平移直线cd,交直线ab于点m,交抛物线于点n,通过怎样的平移能使得以c、d、m、n为顶点的四边形是平行四边形13、(2011黑龙江)已知:抛物线与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点a和点c,且抛物线的对称轴为直线x=2(1)求出抛物线与x轴的两个交点a、b的坐标(2)试确定抛物线的解析式(3)观察图象,请直接写出二次函数值小于一次函数值的自变量x的取值范围 14、(2011贺州)如图,在平面直角坐标系中,抛物线与x轴交于a、b两点(a在b的左侧),与y轴交于点c(0,4),顶点为(1,92)(1)求抛物线的函数表达式;(2)设抛物线的对称轴与轴交于点d,试在对称轴上找出点p,使cdp为等腰三角形,请直接写出满足条件的所有点p的坐标;(3)若点e是线段ab上的一个动点(与a、b不重合),分别连接ac、bc,过点e作efac交线段bc于点f,连接ce,记cef的面积为s,s是否存在最大值?若存在,求出s的最大值及此时e点的坐标;若不存在,请说明理由15、(2011菏泽)如图,抛物线y=12x2+bx2与x轴交于a,b两点,与y轴交于c点,且a(1,0)(1)求抛物线的解析式及顶点d的坐标;(2)判断abc的形状,证明你的结论;(3)点m(m,0)是x轴上的一个动点,当mc+md的值最小时,求m的值16、(2011河南)如图,在平面直角坐标系中,直线y=34x32与抛物线y=14x2+bx+c交于a、b两点,点a在x轴上,点b的横坐标为8(1)求该抛物线的解析式;(2)点p是直线ab上方的抛物线上一动点(不与点a、b重合),过点p作x轴的垂线,垂足为c,交直线ab于点d,作peab于点e设pde的周长为l,点p的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接pa,以pa为边作图示一侧的正方形apfg随着点p的运动,正方形的大小、位置也随之改变当顶点f或g恰好落在y轴上时,直接写出对应的点p的坐标17、(2011杭州)设函数y=kx2+(2k+1)x+1(k为实数)(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图象;(2)根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;(3)对任意负实数k,当xm时,y随着x的增大而增大,试求出m的一个值18、(2011海南)如图,已知抛物线y=x2+bx+9b2(b为常数)经过坐标原点o,且与x轴交于另一点e其顶点m在第一象限(1)求该抛物线所对应的函数关系式;(2)设点a是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点a作x轴的平行线交该抛物线于另一点d,再作abx轴于点bdex轴于点c当线段ab、bc的长都是整数个单位长度时,求矩形abcd的周长;求矩形abcd的周长的最大值,并写出此时点a的坐标;当矩形abcd的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由 19、(2011桂林)已知二次函数y=14x2+32x的图象如图(1)求它的对称轴与x轴交点d的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为a、b、c三点,若acb=90,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为m,以ab为直径,d为圆心作d,试判断直线cm与d的位置关系,并说明理由20、(2011贵阳)如图所示,二次函数y=x2+2x+m的图象与x轴的一个交点为a(3,0),另一个交点为b,且与y轴交于点c(1)求m的值;(2)求点b的坐标;(3)该二次函数图象上有一点d(x,y)(其中x0,y0) 使sabd=sabc,求点d的坐标 21、(2011贵港)如图,已知直线y=12x+2与抛物线y=a (x+2)2相交于a、b两点,点a在y轴上,m为抛物线的顶点(1)请直接写出点a的坐标及该抛物线的解析式;(2)若p为线段ab上一个动点(a、b两端点除外),连接pm,设线段pm的长为l,点p的横坐标为x,请求出l2与x之间的 函数关系,并直接写出自变量x的取值范围;(3)在(2)的条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论