2016年广州市番禹区六校联考中考数学模拟试卷(A)含答案解析.doc_第1页
2016年广州市番禹区六校联考中考数学模拟试卷(A)含答案解析.doc_第2页
2016年广州市番禹区六校联考中考数学模拟试卷(A)含答案解析.doc_第3页
2016年广州市番禹区六校联考中考数学模拟试卷(A)含答案解析.doc_第4页
2016年广州市番禹区六校联考中考数学模拟试卷(A)含答案解析.doc_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2016年广东省广州市番禹区六校联考中考数学模拟试卷(a卷)一、选择题:(本大题共10小题,每小题3分,共30分,每题给出的四个选项中,只有一项是符合题目要求的)11的绝对值是()a1b1c0d12如图所示,几何体的主视图是()abcd3下列计算正确的是()aa+a=2a2ba2a=2a3c(ab)2=ab2d(2a)2a=4a4课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是()abcd5如图,不等式组的解集在数轴上表示正确的是()abcd6如图,a、d是o上的两点,bc是直径,若d=35,则oca的度数是()a35b55c65d707在rtabc中,c=90,sina=,则cosb的值为()abcd8若方程x23x4=0的两根分别为x1和x2,则+的值是()a1b2cd9如图,abcd中,e为ad的中点已知def的面积为1,则abcd的面积为()a9b12c15d1810二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bxt=0(t为实数)在1x4的范围内有解,则t的取值范围是()at1b1t3c1t8d3t8二、填空题(共6小题,每小题3分,满分18分)11使得二次根式有意义的x的取值范围是12分解因式:ay2+2ay+a=13如图,abc的周长为24,ac的垂直平分线交bc于点d,垂足为e,若ae=4,则adb的周长是14已知关于x的一元二次方程x22x+3k=0有两个相等的实数根,则k的值是15如图,已知正方形abcd的边长为12cm,e为cd边上一点,de=5cm以点a为中心,将ade按顺时针方向旋转得abf,则点e所经过的路径长为cm16如图,已知双曲线经过直角三角形oab斜边oa的中点d,且与直角边ab相交于点c若点a的坐标为(6,4),则aoc的面积为三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17解方程组18已知:如图,在abcd中,o为对角线bd的中点,过点o的直线ef分别交ad,bc于e,f两点,连结be,df求证:doebof19先化简,然后在不等式52x1的非负整数解中选一个使原式有意义的数代入求值20如图,在aob中,abo=90,ob=4,ab=8,反比例函数y=在第一象限内的图象分别交oa,ab于点c和点d,且bod的面积sbod=4(1)求直线ao的解析式; (2)求反比例函数解析式;(3)求点c的坐标21课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,a:很好;b:较好;c:一般;d:较差并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)c类女生有名,d类男生有名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的a类和d类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率22如图,ab、cd为两个建筑物,建筑物ab的高度为60米,从建筑物ab的顶点a点测得建筑物cd的顶点c点的俯角eac为30,测得建筑物cd的底部d点的俯角ead为45(1)求两建筑物底部之间水平距离bd的长度;(2)求建筑物cd的高度(结果保留根号)23如图,在rtabc中,c=90,bac的角平分线ad交bc于d(1)动手操作:利用尺规作o,使o经过点a、d,且圆心o在ab上;并标出o与ab的另一个交点e(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,判断直线bc与o的位置关系,并说明理由;若ab=6,bd=2,求线段bd、be与劣弧所围成的图形面积(结果保留根号和)24四边形abcd是正方形,ac与bd,相交于点o,点e、f是直线ad上两动点,且ae=df,cf所在直线与对角线bd所在直线交于点g,连接ag,直线ag交be于点h(1)如图1,当点e、f在线段ad上时,求证:dag=dcg;猜想ag与be的位置关系,并加以证明;(2)如图2,在(1)条件下,连接ho,试说明ho平分bhg;(3)当点e、f运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出bho的度数25已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于a(x1,0)、b(x2,0),x10x2,与y轴交于点c,o为坐标原点,tancaotancbo=1(1)求证:n+4m=0;(2)求m、n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值2016年广东省广州市番禹区六校联考中考数学模拟试卷(a卷)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,每题给出的四个选项中,只有一项是符合题目要求的)11的绝对值是()a1b1c0d1【考点】绝对值【分析】根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数【解答】解:1的绝对值等于其相反数,1的绝对值是1故选b2如图所示,几何体的主视图是()abcd【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案【解答】解:从正面看第一层是一个矩形,第二层左边一个矩形,故选:a3下列计算正确的是()aa+a=2a2ba2a=2a3c(ab)2=ab2d(2a)2a=4a【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【分析】利用同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式的除法,对各选项分析判断后利用排除法求解【解答】解:a、应为a+a=2a,故本选项错误;b、应为a2a=a3,故本选项错误;c、应为(ab)2=a2b2,故本选项错误;d、(2a)2a=4a2a=4a,正确故选d4课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是()abcd【考点】概率公式【分析】游戏中一共有3种情况:“剪刀”、“石头”、“布”,其中是“剪刀”的情况只有一种利用概率公式进行计算即可【解答】解:小亮与小明一起玩“剪刀、石头、布”的游戏,一共有3种情况:“剪刀”、“石头”、“布”,并且每一种情况出现的可能性相同,所以小明出“剪刀”的概率是故选b5如图,不等式组的解集在数轴上表示正确的是()abcd【考点】在数轴上表示不等式的解集;解一元一次不等式组【分析】分别求出各不等式的解集,再在数轴上表示出来即可【解答】解:,由得,x1,由得,x1,故不等式组的解集为:1x1在数轴上表示为:故选b6如图,a、d是o上的两点,bc是直径,若d=35,则oca的度数是()a35b55c65d70【考点】圆周角定理【分析】根据同弧所对的圆周角是圆心角的一半,可知aoc=2d,求出aoc=70,由于oa=oc,可知aoc为等腰三角形,易求出oca的度数【解答】解:aoc=2d,d=35,aoc=2d=235=70,在等腰oac中,oa=oc,aoc=70,oca=55,故选b7在rtabc中,c=90,sina=,则cosb的值为()abcd【考点】锐角三角函数的定义;互余两角三角函数的关系【分析】利用同角、互为余角的三角函数关系式【解答】解:a、b互为余角,cosb=sin(90b)=sina=故选d8若方程x23x4=0的两根分别为x1和x2,则+的值是()a1b2cd【考点】根与系数的关系【分析】找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值【解答】解:依题意得:x1+x2=3,x1x2=4,所以+=故选:c9如图,abcd中,e为ad的中点已知def的面积为1,则abcd的面积为()a9b12c15d18【考点】相似三角形的判定与性质;平行四边形的性质【分析】由于四边形abcd是平行四边形,那么adbc,ad=bc,根据平行线分线段成比例定理的推论可得defbcf,再根据e是ad中点,易求出相似比,从而可求bcf的面积,再利用bcf与def是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求dcf的面积,进而可求abcd的面积【解答】解:如图所示,四边形abcd是平行四边形,adbc,ad=bc,defbcf,sdef:sbcf=()2,又e是ad中点,de=ad=bc,de:bc=df:bf=1:2,sdef:sbcf=1:4,sbcf=4,又df:bf=1:2,sdcf=2,sabcd=2(sdcf+sbcf)=12故选b10二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bxt=0(t为实数)在1x4的范围内有解,则t的取值范围是()at1b1t3c1t8d3t8【考点】二次函数与不等式(组)【分析】根据对称轴求出b的值,从而得到x=1、4时的函数值,再根据一元二次方程x2+bxt=0(t为实数)在1x4的范围内有解相当于y=x2+bx与y=t在x的范围内有交点解答【解答】解:对称轴为直线x=1,解得b=2,所以,二次函数解析式为y=x22x,y=(x1)21,x=1时,y=1+2=3,x=4时,y=1624=8,x2+bxt=0相当于y=x2+bx与直线y=t的交点的横坐标,当1t8时,在1x4的范围内有解故选:c二、填空题(共6小题,每小题3分,满分18分)11使得二次根式有意义的x的取值范围是x【考点】二次根式有意义的条件【分析】根据被开方数大于等于0列式计算即可得解【解答】解:根据题意得,2x+10,解得x故答案为:x12分解因式:ay2+2ay+a=a(y+1)2【考点】提公因式法与公式法的综合运用【分析】首先提取公因式a,进而利用完全平方公式分解因式得出即可【解答】解:ay2+2ay+a=a(y2+2y+1)=a(y+1)2故答案为:a(y+1)213如图,abc的周长为24,ac的垂直平分线交bc于点d,垂足为e,若ae=4,则adb的周长是16【考点】线段垂直平分线的性质【分析】根据线段垂直平分线得出ad=dc,ac=2ae=8,根据abc的周长求出ab+bc=16,求出abd的周长=ab+bc,代入求出即可【解答】解:ac的垂直平分线交bc于点d,垂足为e,ae=4,ad=dc,ac=2ae=8,abc的周长为24,ab+bc+ac=24,ab+bc=248=16,adb的周长是ab+ad+bd=ab+cd+bd=ab+bc=16,故答案为:1614已知关于x的一元二次方程x22x+3k=0有两个相等的实数根,则k的值是1【考点】根的判别式【分析】根据方程有两个相等的实数根可得出=0,列出关于k的方程,求出k的值即可【解答】解:关于x的一元二次方程x22x+3k=0有两个相等的实数根,=0,即=(2)212k=0,解得k=1故答案为:115如图,已知正方形abcd的边长为12cm,e为cd边上一点,de=5cm以点a为中心,将ade按顺时针方向旋转得abf,则点e所经过的路径长为cm【考点】弧长的计算;勾股定理;正方形的性质;旋转的性质【分析】先利用勾股定理求出ae的长,然后根据旋转的性质得到旋转角为dab=90,最后根据弧长公式即可计算出点e所经过的路径长【解答】解:ad=12,de=5,ae=13,又将ade按顺时针方向旋转得abf,而ad=ab,旋转角为dab=90,点e所经过的路径长=(cm)故答案为16如图,已知双曲线经过直角三角形oab斜边oa的中点d,且与直角边ab相交于点c若点a的坐标为(6,4),则aoc的面积为9【考点】反比例函数系数k的几何意义【分析】要求aoc的面积,已知ob为高,只要求ac长,即点c的坐标即可,由点d为三角形oab斜边oa的中点,且点a的坐标(6,4),可得点d的坐标为(3,2),代入双曲线可得k,又abob,所以c点的横坐标为6,代入解析式可得纵坐标,继而可求得面积【解答】解:点d为oab斜边oa的中点,且点a的坐标(6,4),点d的坐标为(3,2),把(3,2)代入双曲线,可得k=6,即双曲线解析式为y=,abob,且点a的坐标(6,4),c点的横坐标为6,代入解析式y=,y=1,即点c坐标为(6,1),ac=3,又ob=6,saoc=acob=9故答案为:9三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17解方程组【考点】解二元一次方程组【分析】+消去未知数y求x的值,再把x=3代入,求未知数y的值【解答】解:+得3x=9,解得x=3,把x=3代入,得3y=1,解得y=2,原方程组的解是18已知:如图,在abcd中,o为对角线bd的中点,过点o的直线ef分别交ad,bc于e,f两点,连结be,df求证:doebof【考点】平行四边形的性质;全等三角形的判定【分析】由平行四边形的性质得出bo=do,adbc,证出edo=fbo,由asa证明doebof即可【解答】证明:在abcd中,o为对角线bd的中点,bo=do,adbc,edo=fbo,在eod和fob中,doebof(asa)19先化简,然后在不等式52x1的非负整数解中选一个使原式有意义的数代入求值【考点】分式的化简求值;一元一次不等式的整数解【分析】先根据分式混合运算的法则把原式进行化简,再根据52x1求出x的取值范围,再在其非负整数解中选出x的值代入代数式进行计算即可【解答】解:原式=,52x1,x3,非负整数解为x=0,1,2,当x=0时,原式=20如图,在aob中,abo=90,ob=4,ab=8,反比例函数y=在第一象限内的图象分别交oa,ab于点c和点d,且bod的面积sbod=4(1)求直线ao的解析式; (2)求反比例函数解析式;(3)求点c的坐标【考点】待定系数法求反比例函数解析式;待定系数法求一次函数解析式;反比例函数系数k的几何意义【分析】(1)首先根据题意确定a点坐标,然后设直线ao的解析式为y=kx,再把a点坐标代入可得k的值,进而可得函数解析式;(2)根据bod的面积sbod=4可得d点坐标,再把d点坐标代入y=可得k的值,进而可得函数解析式;(3)点c是正比例函数和反比例函数的交点,联立两个函数解析式,然后再解可得c点坐标【解答】解:(1)ob=4,ab=8,abo=90,a点坐标为(4,8),设直线ao的解析式为y=kx,则4k=8,解得k=2,即直线ao的解析式为y=2x;(2)ob=4,sbod=4,abo=90,d点坐标为(4,2),点d(4,2)代入y=,则2=,解得k=8,反比例函数解析式为y=;(3)直线y=2x与反比例函数y=构成方程组为,解得,(舍去),c点坐标为(2,4)21课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,a:很好;b:较好;c:一般;d:较差并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)c类女生有3名,d类男生有1名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的a类和d类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率【考点】条形统计图;扇形统计图;列表法与树状图法【分析】(1)根据b类有6+4=10人,所占的比例是50%,据此即可求得总人数;(2)利用(1)中求得的总人数乘以对应的比例即可求得c类的人数,然后求得c类中女生人数,同理求得d类男生的人数;(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解【解答】解:(1)(6+4)50%=20所以王老师一共调查了20名学生(2)c类学生人数:2025%=5(名)c类女生人数:52=3(名),d类学生占的百分比:115%50%25%=10%,d类学生人数:2010%=2(名),d类男生人数:21=1(名),故c类女生有3名,d类男生有1名;补充条形统计图(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种所以p(所选两位同学恰好是一位男同学和一位女同学)=22如图,ab、cd为两个建筑物,建筑物ab的高度为60米,从建筑物ab的顶点a点测得建筑物cd的顶点c点的俯角eac为30,测得建筑物cd的底部d点的俯角ead为45(1)求两建筑物底部之间水平距离bd的长度;(2)求建筑物cd的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题【分析】(1)根据题意得:bdae,从而得到bad=adb=45,利用bd=ab=60,求得两建筑物底部之间水平距离bd的长度为60米;(2)延长ae、dc交于点f,根据题意得四边形abdf为正方形,根据af=bd=df=60,在rtafc中利用fac=30求得cf,然后即可求得cd的长【解答】解:(1)根据题意得:bdae,adb=ead=45,abd=90,bad=adb=45,bd=ab=60,两建筑物底部之间水平距离bd的长度为60米;(2)延长ae、dc交于点f,根据题意得四边形abdf为正方形,af=bd=df=60,在rtafc中,fac=30,cf=aftanfac=60=20,又fd=60,cd=6020,建筑物cd的高度为(6020)米23如图,在rtabc中,c=90,bac的角平分线ad交bc于d(1)动手操作:利用尺规作o,使o经过点a、d,且圆心o在ab上;并标出o与ab的另一个交点e(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,判断直线bc与o的位置关系,并说明理由;若ab=6,bd=2,求线段bd、be与劣弧所围成的图形面积(结果保留根号和)【考点】圆的综合题【分析】(1)根据题意得:o点应该是ad垂直平分线与ab的交点;(2)由bac的角平分线ad交bc边于d,与圆的性质可证得acod,又由c=90,则问题得证;设o的半径为r则在rtobd中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段bd、be与劣弧de所围成的图形面积为:sodbs扇形ode=2”【解答】解:(1)如图1;(2)如图1,连接od,oa=od,oad=ado,bac的角平分线ad交bc边于d,cad=oad,cad=ado,acod,c=90,odb=90,odbc,即直线bc与o的切线,直线bc与o的位置关系为相切;(2)如图2,设o的半径为r,则ob=6r,又bd=2,在rtobd中,od2+bd2=ob2,即r2+(2 )2=(6r)2,解得r=2,ob=6r=4,dob=60,s扇形ode=,sodb=odbd=22=2,线段bd、be与劣弧de所围成的图形面积为:sodbs扇形ode=224四边形abcd是正方形,ac与bd,相交于点o,点e、f是直线ad上两动点,且ae=df,cf所在直线与对角线bd所在直线交于点g,连接ag,直线ag交be于点h(1)如图1,当点e、f在线段ad上时,求证:dag=dcg;猜想ag与be的位置关系,并加以证明;(2)如图2,在(1)条件下,连接ho,试说明ho平分bhg;(3)当点e、f运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出bho的度数【考点】四边形综合题;全等三角形的判定与性质;正方形的性质【分析】(1)根据正方形的性质得da=dc,adb=cdb=45,则可根据“sas”证明adgcdg,所以dag=dcg;根据正方形的性质得ab=dc,bad=cda=90,根据“sas”证明abedcf,则abe=dcf,由于dag=dcg,所以dag=abe,然后利用dag+bag=90得到abe+bag=90,于是可判断agbe;(2)如答图1所示,过点o作ombe于点m,onag于点n,证明aonbom,可得四边形omhn为正方形,因此ho平分bhg结论成立;(3)如答图2所示,与(1)同理,可以证明agbe;过点o作ombe于点m,onag于点n,构造全等三角形aonbom,从而证明omhn为正方形,所以ho平分bhg,即bho=45【解答】(1)证明:四边形abcd为正方形,da=dc,adb=cdb=45,在adg和cdg中,adgcdg(sas),dag=dcg;解:agbe理由如下:四边形abcd为正方形,ab=dc,bad=cda=90,在abe和dcf中,abedcf(sas),abe=dcf,dag=dcg,dag=abe,dag+bag=90,abe+bag=90,ahb=90,agbe;(2)解:由(1)可知agbe如答图1所示,过点o作ombe于点m,onag于点n,则四边形omhn为矩形mon=90,又oaob,aon=bomaon+oan=90,bom+obm=90,oan=obm在aon与bom中,aonbom(aas)om=on,矩形omhn为正方形,ho平分bhg(3)将图形补充完整,如答图2示,bho=45与(1)同理,可以证明agbe过点o作ombe于点m,onag于点n,与(2)同理,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论