氮气置换计算0.0.xls_第1页
氮气置换计算0.0.xls_第2页
氮气置换计算0.0.xls_第3页
氮气置换计算0.0.xls_第4页
氮气置换计算0.0.xls_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

氮氮气气置置换换计计算算器器1.01.0 理理论论 理理论论数数据据氮氮气气使使用用量量计计算算 项项目目数数量量单单位位 项项目目 氮氮气气温温度度 初初始始容容器器内内烃烃类类压压力力0.4barg氮氮气气密密度度 理理论论充充压压压压力力3.10barg体体积积 理理论论泄泄压压压压力力0.35barg预预计计大大约约氮氮气气使使用用量量 置置换换合合格格目目标标值值99.8000%充充压压用用时时计计算算 理理论论置置换换次次数数5.8972times1 1根根25mm25mm氮氮气气流流量量大大约约 假假设设置置换换次次数数5times接接氮氮气气胶胶管管数数量量 理理论论氮氮气气含含量量99.4582%充充压压一一次次用用时时 实实际际 充充压压 充充压压压压力力泄泄压压压压力力氮氮气气含含量量 数数量量单单位位数数量量单单位位数数量量单单位位 第第1 1次次2.71barg0.58barg40.3774% 第第2 2次次2.80barg0.30barg79.6028% 第第3 3次次2.83barg0.61barg91.4257% 第第4 4次次3.07barg0.38barg97.0927% 第第5 5次次3.00barg0.35barg99.0188% 第第6 6次次3.00barg0.35barg99.6688% 第第7 7次次3.00barg0.35barg99.8882% 第第8 8次次0.00barg0.00barg99.8882% 第第9 9次次0.00barg0.00barg99.8882% 第第1010次次0.00barg0.00barg99.8882% 实实际际总总的的氮氮气气用用量量 体体积积计计算算 管管线线总总体体积积0.00m3 no直直径径单单位位长长度度单单位位体体积积单单位位 管管线线1 10mm0m0.00m3 管管线线2 20mm0m0.00m3 管管线线3 30mm0m0.00m3 管管线线4 40mm0m0.00m3 管管线线5 50mm0m0.00m3 管管线线6 60mm0m0.00m3 管管线线7 70mm0m0.00m3 管管线线8 80mm0m0.00m3 管管线线9 90mm0m0.00m3 管管线线10100mm0m0.00m3 管管线线11110mm0m0.00m3 管管线线12120mm0m0.00m3 管管线线13130mm0m0.00m3 管管线线14140mm0m0.00m3 管管线线15150mm0m0.00m3 管管线线16160mm0m0.00m3 管管线线17170mm0m0.00m3 管管线线18180mm0m0.00m3 管管线线19190mm0m0.00m3 管管线线20200mm0m0.00m3 管管线线21210mm0m0.00m3 管管线线22220mm0m0.00m3 管管线线23230mm0m0.00m3 管管线线24240mm0m0.00m3 管管线线25250mm0m0.00m3 管管线线26260mm0m0.00m3 管管线线27270mm0m0.00m3 管管线线28280mm0m0.00m3 管管线线29290mm0m0.00m3 管管线线30300mm0m0.00m3 管管线线31310mm0m0.00m3 管管线线32320mm0m0.00m3 管管线线33330mm0m0.00m3 管管线线34340mm0m0.00m3 管管线线35350mm0m0.00m3 管管线线36360mm0m0.00m3 管管线线37370mm0m0.00m3 管管线线38380mm0m0.00m3 管管线线39390mm0m0.00m3 管管线线40400mm0m0.00m3 管管线线41410mm0m0.00m3 管管线线42420mm0m0.00m3 管管线线43430mm0m0.00m3 管管线线44440mm0m0.00m3 管管线线45450mm0m0.00m3 管管线线46460mm0m0.00m3 管管线线47470mm0m0.00m3 管管线线48480mm0m0.00m3 管管线线49490mm0m0.00m3 管管线线50500mm0m0.00m3 管管线线51510mm0m0.00m3 管管线线52520mm0m0.00m3 管管线线53530mm0m0.00m3 管管线线54540mm0m0.00m3 管管线线55550mm0m0.00m3 管管线线56560mm0m0.00m3 管管线线57570mm0m0.00m3 管管线线58580mm0m0.00m3 管管线线59590mm0m0.00m3 管管线线60600mm0m0.00m3 管管线线61610mm0m0.00m3 管管线线62620mm0m0.00m3 管管线线63630mm0m0.00m3 管管线线64640mm0m0.00m3 管管线线65650mm0m0.00m3 管管线线66660mm0m0.00m3 管管线线67670mm0m0.00m3 管管线线68680mm0m0.00m3 管管线线69690mm0m0.00m3 管管线线70700mm0m0.00m3 管管线线71710mm0m0.00m3 管管线线72720mm0m0.00m3 管管线线73730mm0m0.00m3 管管线线74740mm0m0.00m3 管管线线75750mm0m0.00m3 管管线线76760mm0m0.00m3 管管线线77770mm0m0.00m3 管管线线78780mm0m0.00m3 管管线线79790mm0m0.00m3 管管线线80800mm0m0.00m3 管管线线81810mm0m0.00m3 管管线线82820mm0m0.00m3 管管线线83830mm0m0.00m3 管管线线84840mm0m0.00m3 管管线线85850mm0m0.00m3 管管线线86860mm0m0.00m3 管管线线87870mm0m0.00m3 管管线线88880mm0m0.00m3 管管线线89890mm0m0.00m3 管管线线90900mm0m0.00m3 管管线线91910mm0m0.00m3 管管线线92920mm0m0.00m3 管管线线93930mm0m0.00m3 管管线线94940mm0m0.00m3 管管线线95950mm0m0.00m3 管管线线96960mm0m0.00m3 管管线线97970mm0m0.00m3 管管线线98980mm0m0.00m3 管管线线99990mm0m0.00m3 管管线线1001000mm0m0.00m3 数数量量单单位位 20 1.165142kg/m3 所所有有计计算算基基于于理理 想想气气体体方方程程 3300m3 63.442ton 0.700t/h 3 4.94h 氮氮气气用用量量 数数量量单单位位 8.1898ton 9.6124ton 8.5358ton 10.3430ton 10.1892ton 10.1892ton 10.1892ton 0.0000ton 0.0000ton 0.0000ton 67.2485ton 容容器器总总体体积积3300m3 no体体积积单单位位 容容器器1 13300m3 容容器器2 20m3 容容器器3 30m3 容容器器4 40m3 容容器器5 50m3 容容器器6 60m3 容容器器7 70m3 容容器器8 80m3 氮氮气气置置换换计计算算器器1.01.0 理理论论 氮氮气气使使用用量量计计算算 项项目目 氮氮气气温温度度 氮氮气气密密度度 体体积积 预预计计大大约约氮氮气气使使用用量量 充充压压用用时时计计算算 1 1根根25mm25mm氮氮气气流流量量大大约约 接接氮氮气气胶胶管管数数量量 充充压压一一次次用用时时 实实际际 体体积积计计算算 容容器器9 90m3 容容器器10100m3 容容器器11110m3 容容器器12120m3 容容器器13130m3 容容器器14140m3 容容器器15150m3 容容器器16160m3 容容器器17170m3 容容器器18180m3 容容器器19190m3 容容器器20200m3 容容器器21210m3 容容器器22220m3 容容器器23230m3 容容器器24240m3 容容器器25250m3 容容器器26260m3 容容器器27270m3 容容器器28280m3 容容器器29290m3 容容器器30300m3 容容器器31310m3 容容器器32320m3 容容器器33330m3 容容器器34340m3 容容器器35350m3 容容器器36360m3 容容器器37370m3 容容器器38380m3 容容器器39390m3 容容器器40400m3 容容器器41410m3 容容器器42420m3 容容器器43430m3 容容器器44440m3 容容器器45450m3 容容器器46460m3 容容器器47470m3 容容器器48480m3 容容器器49490m3 容容器器50500m3 容容器器51510m3 容容器器52520m3 容容器器53530m3 容容器器54540m3 容容器器55550m3 容容器器56560m3 容容器器57570m3 容容器器58580m3 容容器器59590m3 容容器器60600m3 容容器器61610m3 容容器器62620m3 容容器器63630m3 容容器器64640m3 容容器器65650m3 容容器器66660m3 容容器器67670m3 容容器器68680m3 容容器器69690m3 容容器器70700m3 容容器器71710m3 容容器器72720m3 容容器器73730m3 容容器器74740m3 容容器器75750m3 容容器器76760m3 容容器器77770m3 容容器器78780m3 容容器器79790m3 容容器器80800m3 容容器器81810m3 容容器器82820m3 容容器器83830m3 容容器器84840m3 容容器器85850m3 容容器器86860m3 容容器器87870m3 容容器器88880m3 容容器器89890m3 容容器器90900m3 容容器器91910m3 容容器器92920m3 容容器器93930m3 容容器器94940m3 容容器器95950m3 容容器器96960m3 容容器器97970m3 容容器器98980m3 容容器器99990m3 容容器器1001000m3 n2 replacement calculator 1.0 theoretical calculation data in theoryn2 consumption calculation itemvalueunit itemvalueunit note: all calculations are based on ideal gas equation n2 temperature initial pressure of hc in vessel0.3bargn2 density1.2505kg/m3 target pressure of pressurizing3.50bargvolume3300m3 release pressure on target0.40bargestimate consumption of n2102.341ton n2 percent on target99.9800%time consumption replace times theoretically7.5193timesn2 flowrate =25mm hose0.750t/h replace times hypothetically2timesnumbers of n2 hose used2 n2 content theoretically87.4173% time consumption for each pressurizing 8.80h actual calculation time of pressurize targe pressurerelease pressuren2 contentn2 consumption valueunitvalueunitvalueunitvalueunit no.13.00barg0.40barg54.5000%10.7293ton no.24.00barg0.30barg88.1700%15.2686ton no.33.11barg0.30barg96.2582%11.5959ton no.40.00barg0.00barg96.2582%0.0000ton no.50.00barg0.00barg96.2582%0.0000ton no.60.00barg0.00barg96.2582%0.0000ton no.70.00barg0.00barg96.2582%0.0000ton no.80.00barg0.00barg96.2582%0.0000ton no.90.00barg0.00barg96.2582%0.0000ton no.100.00barg0.00barg96.2582%0.0000ton total n2 consumption37.5938ton volume calculation total volume of the line0.00m3 total volume of vessel 3300m3 nodiameterunitlengthunitvolumeunitnovolumeunit line 10mm0m0.00m3vessel 13300m3 line 20mm0m0.00m3vessel 20m3 line 30mm0m0.00m3vessel 30m3 line 40mm0m0.00m3vessel 40m3 line 50mm0m0.00m3vessel 50m3 line 60mm0m0.00m3vessel 60m3 line 70mm0m0.00m3vessel 70m3 line 80mm0m0.00m3vessel 80m3 line 90mm0m0.00m3vessel 90m3 line 100mm0m0.00m3vessel 100m3 line 110mm0m0.00m3vessel 110m3 line 120mm0m0.00m3vessel 120m3 line 130mm0m0.00m3vessel 130m3 line 140mm0m0.00m3vessel 140m3 line 150mm0m0.00m3vessel 150m3 line 160mm0m0.00m3vessel 160m3 line 170mm0m0.00m3vessel 170m3 line 180mm0m0.00m3vessel 180m3 line 190mm0m0.00m3vessel 190m3 line 200mm0m0.00m3vessel 200m3 line 210mm0m0.00m3vessel 210m3 line 220mm0m0.00m3vessel 220m3 line 230mm0m0.00m3vessel 230m3 line 240mm0m0.00m3vessel 240m3 line 250mm0m0.00m3vessel 250m3 line 260mm0m0.00m3vessel 260m3 line 270mm0m0.00m3vessel 270m3 line 280mm0m0.00m3vessel 280m3 line 290mm0m0.00m3vessel 290m3 line 300mm0m0.00m3vessel 300m3 line 310mm0m0.00m3vessel 310m3 line 320mm0m0.00m3vessel 320m3 line 330mm0m0.00m3vessel 330m3 line 340mm0m0.00m3vessel 340m3 line 350mm0m0.00m3vessel 350m3 line 360mm0m0.00m3vessel 360m3 line 370mm0m0.00m3vessel 370m3 line 380mm0m0.00m3vessel 380m3 line 390mm0m0.00m3vessel 390m3 line 400mm0m0.00m3vessel 400m3 line 410mm0m0.00m3vessel 410m3 line 420mm0m0.00m3vessel 420m3 line 430mm0m0.00m3vessel 430m3 line 440mm0m0.00m3vessel 440m3 line 450mm0m0.00m3vessel 450m3 line 460mm0m0.00m3vessel 460m3 line 470mm0m0.00m3vessel 470m3 line 480mm0m0.00m3vessel 480m3 line 490mm0m0.00m3vessel 490m3 line 500mm0m0.00m3vessel 500m3 line 510mm0m0.00m3vessel 510m3 line 520mm0m0.00m3vessel 520m3 line 530mm0m0.00m3vessel 530m3 line 540mm0m0.00m3vessel 540m3 line 550mm0m0.00m3vessel 550m3 line 560mm0m0.00m3vessel 560m3 line 570mm0m0.00m3vessel 570m3 line 580mm0m0.00m3vessel 580m3 line 590mm0m0.00m3vessel 590m3 line 600mm0m0.00m3vessel 600m3 line 610mm0m0.00m3vessel 610m3 line 620mm0m0.00m3vessel 620m3 line 630mm0m0.00m3vessel 630m3 line 640mm0m0.00m3vessel 640m3 line 650mm0m0.00m3vessel 650m3 line 660mm0m0.00m3vessel 660m3 line 670mm0m0.00m3vessel 670m3 line 680mm0m0.00m3vessel 680m3 line 690mm0m0.00m3vessel 690m3 line 700mm0m0.00m3vessel 700m3 line 710mm0m0.00m3vessel 710m3 line 720mm0m0.00m3vessel 720m3 line 730mm0m0.00m3vessel 730m3 line 740mm0m0.00m3vessel 740m3 line 750mm0m0.00m3vessel 750m3 line 760mm0m0.00m3vessel 760m3 line 770mm0m0.00m3vessel 770m3 line 780mm0m0.00m3vessel 780m3 line 790mm0m0.00m3vessel 790m3 line 800mm0m0.00m3vessel 800m3 line 810mm0m0.00m3vessel 810m3 line 820mm0m0.00m3vessel 820m3 line 830mm0m0.00m3vessel 830m3 line 840mm0m0.00m3vessel 840m3 line 850mm0m0.00m3vessel 850m3 line 860mm0m0.00m3vessel 860m3 line 870mm0m0.00m3vessel 870m3 line 880mm0m0.00m3vessel 880m3 line 890mm0m0.00m3vessel 890m3 line 900mm0m0.00m3vessel 900m3 line 910mm0m0.00m3vessel 910m3 line 920mm0m0.00m3vessel 920m3 line 930mm0m0.00m3vessel 930m3 line 940mm0m0.00m3vessel 940m3 line 950mm0m0.00m3vessel 950m3 line 960mm0m0.00m3vessel 960m3 line 970mm0m0.00m3vessel 970m3 line 980mm0m0.00m3vessel 980m3 line 990mm0m0.00m3vessel 990m3 line 1000mm0m0.00m3vessel 1000m3 note: all calculations are based on ideal gas equation choked flow from wikipedia, the free encyclopedia choked flow of a fluid is a fluid dynamic condition caused by the venturi effect. when a flowing fluid at a certain pressure and temperature flows through a restriction (such as the hole in an orifice plate or a valve in a pipe) into a lower pressure environment, under the conservation of mass the fluid velocity must increase for initially subsonic upstream conditions as it flows through the smaller cross-sectional area of the restriction. at the same time, the venturi effect causes the pressure to decrease. choked flow is a limiting condition which occurs when the velocity will not increase with a further decrease in the downstream pressure environment. for homogeneous fluids, the physical point at which the choking occurs for adiabatic conditions is when the exit plane velocity is at sonic conditions or at a mach number of 1.123 it is most important to note that the mass flow rate can still be increased by increasing the upstream stagnation pressure, or by decreasing the upstream stagnation temperature. the choked flow of gases is useful in many engineering applications because the mass flow rate is independent of the downstream pressure, depending only on the temperature and pressure on the upstream side of the restriction. under choked conditions, valves and calibrated orifice plates can be used to produce a particular mass flow rate. if the fluid is a liquid, a different type of limiting condition (also known as choked flow) occurs when the venturi effect acting on the liquid flow through the restriction decreases the liquid pressure to below that of the liquid vapor pressure at the prevailing liquid temperature. at that point, the liquid will partially flash into bubbles of vapor and the subsequent collapse of the bubbles causes cavitation. cavitation is quite noisy and can be sufficiently violent to physically damage valves, pipes and associated equipment. in effect, the vapor bubble formation in the restriction limits the flow from increasing any further.45 contents hide 1 mass flow rate of a gas at choked conditions 1.1 choking in change of cross section flow 2 thin-plate orifices 3 minimum pressure ratio required for choked flow to occur 4 see also 5 references 6 external links all gases flow from upstream higher stagnation pressure sources to downstream lower pressure sources. there are several situations in which choked flow occurs, such as: change of cross section (as in a convergent-divergent nozzle or flow through an orifice plate), fanno flow, isothermal flow and rayleigh flow. edit choking in change of cross section flow assuming ideal gas behavior, steady state choked flow occurs when the ratio of the absolute upstream pressure to the absolute downstream pressure is equal to or greater than ( k + 1 ) / 2 k / ( k - 1 ), where k is the specific heat ratio of the gas (sometimes called the isentropic expansion factor and sometimes denoted as ). for many gases, k ranges from about 1.09 to about 1.41, and therefore ( k + 1 ) / 2 k / ( k - 1 ) ranges from 1.7 to about 1.9 . which means that choked flow usually occurs when the absolute source vessel pressure is at least 1.7 to 1.9 times as high as the absolute downstream pressure. when the gas velocity is choked, the equation for the mass flow rate in si metric units is: 1236 where the terms are defined in the table below. if the density is not known directly, then it is useful to eliminate it using the ideal gas law corrected for the real gas compressibility: so that the mass flow rate is primarily dependent on the cross-sectional area a of the hole and the upstream pressure p, and only weakly dependent on the temperature t. the rate does not depend on the downstream pressure at all. all other terms are constants that depend only on the composition of the material in the flow. although the gas velocity reaches a maximum and becomes choked, the mass flow rate is not choked. the mass flow rate can still be increased if the upstream pressure is increased. where: m= mass flow rate, kg/s c = discharge coefficient, dimensionless (usually about 0.72) a = discharge hole cross-sectional area, m k = cp/cv of the gas cp = specific heat of the gas at constant pressure cv = specific heat of the gas at constant volume = real gas density at p and t, kg/m p = absolute upstream stagnation pressure, pa m = the gas molecular mass, kg/kmole (also known as the molecular weight) r = universal gas law constant = 8314.5 (nm) / (kmolek) t = absolute gas temperature, k z = the gas compressibility factor at p and t, dimensionless the above equations calculate the steady state mass flow rate for the stagnation pressure and temperature existing in the upstream pressure source. if the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate. subsequently, the mass flow rate will decrease during the discharge as the source vessel empties and the pressure in the vessel decreases. calculating the flow rate versus time since the initiation of the discharge is much more complicated, but more accurate. two equivalent methods for performing such calculations are explained and compared online.7 the technical literature can be very confusing because many authors fail to explain whether they are using the universal gas law constant r which applies to any ideal gas or whether they are using the gas law constant rs which only applies to a specific individual gas. the relationship between the two constants is rs = r / m. notes: for a monatomic ideal gas, z = 1 and is the ideal gas density. kmole = 1000 moles = 1000 gram-moles = kilogram-mole thin-plate orifices the flow of real gases through thin-plate orifices never becomes fully choked. the mass flow rate through the orifice continues to increase as the downstream pressure is lowered to a perfect vacuum, though the mass flow rate increases slowly as the downstream pressure is reduced below the critical pressure.8 cunningham (1951) first drew attention to the fact that choked flow will not occur across a standard, thin, square-edged orifice.9 10 minimum pressure ratio required for choked flow to occur the minimum pressure ratios required for choked conditions to occur (when some typical industrial gases are flowing) are presented in table 1. the ratios were obtained using the criteria that choked flow occurs when the ratio of the absolute upstream pressure to the absolute downstream pressure is equal to or greater than ( k + 1 ) / 2 k / ( k - 1 ) , where k is the specific heat ratio of the gas. the minimum pressure ratio may be understood as the ratio between the upstream pressure and the pressure at the nozzle throat when the gas is traveling at mach 1; if the upstream pressure is too low compared to the downstream pressure, sonic flow cannot occur at the throat. notes: pu = absolute upstream gas pressure pd = absolute downstream gas pressure k values obtained from: perry, robert h. and green, don w. (1984). perrys chemical engineers handbook (6th edition ed.). mcgraw-hill company. isbn 0-07-049479-7. phillips petroleum company (1962). reference data for hydrocarbons and petro-sulfu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论