




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
从一号店谈数据营销这几年运营做下来,盘点一下收获,发现用两个词就可以概括了:客户&数据。前面的两篇讲的都是和客户有关的内容,这次来讲讲怎么用数据做营销。有很多次在和别人聊天的时候,一说我是做数据营销的,对方立即就用一种看数学家的眼光打量我,然后脑子里就开始蹦出“聚类分析,回归分析,群体偏好”等等内容。等聊着聊着,发现我完全不提那些内容时,就会开始问我:“你说的数据营销到底是什么意思啊?”理论的东西我就不多说了,最近和淘宝的兄弟们对淘宝超市讨论的比较多,就用家网络超市来举个例子,看看数据营销到底是做哪些东西的。 数据化营销第一层:千人一面千人千面数据营销第二层:客户生命周期管理数据营销第三层:老客户培育数据化营销第一层:千人一面千人千面数据化营销的第一大作用,就是可以把目标客户切分得更细,更精准,使得我们在推广过程中的内容与买家更相关,把运营从千人一面变成千人千面,是数据化营销的主要目标之一。之前收到一封1号店的推广邮件,如下:这样的邮件我想大家每天都会收到很多,也会发出很多,我们今天不讨论邮件本身,我们来看看通过数据营销如何把这封邮件做得更好。假设这封邮件是要发给100万会员的,假如我们要得到最高的购买率,最好的方式肯定是给100万人发100万封个性化的邮件,给每个人都推不同的商品。但这样的方式显然在实际操作中是不可行的。于是,数据化营销就是要找到一种可操作的让我们得到最高购买率的营销方法。如何才能让上面这封发给100万人的邮件转化率更高?我们先来看一种好一点点的方法:我们把客户按年龄、性别分成4组,然后根据这个组的特点yy一些主推的商品,然后做成4个页面,分别投放到4个客户群。年龄性别典型主推商品 典型文案15-25男可乐,可乐18元/箱,比超市便宜5元,再也不用自己扛,半日内送货上门15-25女各类零食,洗发水25-35男啤酒,25-35女洗发水,纸巾,色拉油做数据营销的一大前提就是数据积累,数据积累的程度决定了数据营销能做得多精细。在这里我们需要积累的信息很少,年龄、性别,两个属性就ok了。(如果我们在这里添加更多客户的属性,就可以把整个客户群分成更细的小群,比如加上“收入”,“教育程度”,“职业”等等,银行就是基于这些信息做客户的crm管理和风险管理的。细分的好处是可以更精准,缺点是推广的成本更高,同时,随着客户群分的越细,推广效率增长的边际效益递减,所以分到差不多细就可以了。)然后,我们再比这个做得好一点点:我们在每一个组里,再增加“浏览类目”和“购买类目”两个字段,年龄性别浏览类目top3 购买类目top3典型文案15-25男饮料,纸品,进口食品饮料,进口食品,纸品可乐18元/箱,比超市便宜5元,再也不用自己扛,半日内送货上门15-25女25-35男25-35女那我们就可以看到“1525岁的男人购买最多的3个类目是食品饮料,日化纸品,食品进口食品”,然后我们就可以有几种选择:简单点就从“饮料,纸品,进口食品”中各选一件促销商品,做成一个促销包,推给整个组。这里的数据积累就更复杂一些了,首先,我们要积累每个会员的购买记录和浏览记录,光这两个字段,就需要一个庞大的数据库了。还能再好一点点吗?我们看到了每个人的交易记录和浏览记录之后,商业有上几条思路可以继续细化:1.有哪些东西是客户经常看但是没有买的?2.客户买了a之后最有可能买的b是什么?做1需要我们通过对浏览记录和购买记录进行关联,通过数据分析设定“类目浏览次数n且未购买”的标准。做2比较复杂,最通用的做法是分析购买记录,通过分析整个客户群,建立算法,假设购买a产品的有1万人,分析这1万人的购买记录,找到这些人购买的其它产品中购买次数最多的产品b,c,d,放在a的页面上进行推荐(amazon基本就是这么做的)从一号店谈数据营销第二层:客户生命周期管理数据营销的第二大作用,就是能够针对每个客户所处的不同状态,对其进行营销和激活,把客户从第一次尝试到最后离开的整个过程都管理起来,尽可能提高各个环节的转化率。我们以超市来举个例子,那就是尽可能让客户从“浏览”到“初次购买”,到“二次购买”,到“重复购买”,到“更高arpu值”,各个阶段的转化率更高,最终把一个客户培养成一个高粘度的超市客户:还是举一号店的例子,我们可以把客户从第一次浏览开始的行为都管理起来:先来看个生命周期v1.0的:要做这样的一个生命周期管理的系统,我们需要几样东西:1.一个crm,以记录“属性数据”,“交易数据”,“行为数据”2.一个和erp打通的,根据条件触发营销内容的消息系统(包括dm,短信,站内信,等)3.一套优惠券系统做客户生命周期管理有几个非常重要的点:1.疲劳度的控制: 一个客户常常会同时处于多个规则的覆盖之下,如何保证每个客户既能收到有效的信息,又不会被过度骚扰,要求我们设置好规则和优先级,控制某一时段内会被触发的规则数。比如一个客户连续3天买了3次,那上面的3,4,5,6条规则都应该只被触发一次。2.营销的相关度:每个人都对和自己相关的信息特别重视,我们越了解客户,客户就会越觉得受重视,而数据就是我们了解客户,和客户建立关联的很好的渠道。比如,我们如果能够通过数据了解目标客户是1525岁的男人群体,情人节时就可以推“送给女朋友的礼物”,文案上也可以直接推“给女朋友送礼物”这个点,而不会像我收到“调理女性健康”的美容院的短信时那么汗。3.营销的友好程度:同样一条短信,是关怀还是骚扰,就只在客户一念之间,如何能够从客户的角度出发考虑问题,每一次营销都切实给客户带来价值,让客户觉得很温馨,而不是让客户觉得很烦,考验的就是对客户的理解和营销的功力。ok,等这个做好以后,我们可以再根据客户的行为和交易来个v2.0的生命周期管理,1.0的生命周期管理是不区分每个客户的个性的,而2.0的最大特点是会根据每个客户自身的交易历史和浏览历史给不同的营销:目前在我们自己的产品已经基本都建立了v1.0的生命周期管理,v2.0在某些产品有一定应用,欢迎大家一起来yy一下v3.0的数据营销应该长啥样子下次再讲讲数据营销的第三层:客户培育。从一号店看数据营销第三层:客户培育第三层:客户培育留住一个老客户等于开发五个新客户,上面说的客户生命周期更多的是一套营销的机制,但如何把真正的把客户从生培养到熟,其实内涵远远大于一套营销机制。上面讲的两层都是术,好教好学,但数据营销其实是一种理,不是一种技能,可以运用在整个营销的各个环节,方方面面。到这里就只有举例子啦。我们分几个阶段来看数据营销如何来培养客户,还是以网络超市的例子。非客户潜在客户浏览客户购买客户二次购买客户忠诚客户高arpu值客户。阶段一:非客户潜在客户从“非客户”到“潜在客户”核心讲的是用户群的区分和定位。什么样的人有可能成为一号店的客户。当然,在跑马圈地的年代,这不是最主要的问题,有流量就是王道,转化率是后一位的问题,任何能够获得大流量的渠道都是好渠道,这也是为什么我们现在能看到这么多的b2c把门户网站几乎所有的首页广告位都包了。但我相信,当b2c成熟之后,随着流量成本的进一步提高,盲目的首页投放将无法带来合理的roi,那时候,b2c们就会开始考虑我的目标客户是谁,如何用更精准的方式和客户进行交互。以一号店这样的区域性b2c为例(我对一号店的推广策略并不了解,只是yy的举个例子)。在经过了2年的数据积累之后,我相信他们已经能够从现有数据中通过聚类分析,做出一些典型客户群体的画像:也就是从100万条客户的数据中,找出一些具有类似特征的客户的群体。这个具体的数据挖掘的过程比较复杂,简单说就是从用户的宽表中(crm中),通过概率分布,发现一些具有特定特征的群体,如我们发现北京来购买的人群中5%都是15-25岁北京女性,我们就可以把他们归为“北京女学生”的群体。这样在后续针对这个人群进行推广的时候提供一些宿舍用品也许就会效果不错。 (移动在这一块做得很好,他们的套餐都是通过聚类分析及商业判断后总结出来,针对特定人群,为满足其特定需求而设计出来的。比如他们通过数据分析发现很多用户在一年中的1-2月和7-8月话费为0,而且在这些时间里有很多人会流失,以后再也不使用移动的号码。经过调研和分析发现,学生每年放假回家的时候就会换号,导致号码的空置,而当他们再回学校时,很多人已经找不到原来的号,导致客户的流失。于是他们就推出了一个学生卡长途套餐,使学生回家后不用换号也可以用差不多的资费打电话,这个套餐一推出就非常受欢迎。)阶段二:潜在客户浏览客户这里的问题是推广转化率,或者叫点击率,我们通常把这个值称为ctr(click through rate),也就是说一封邮件被100人打开后,有x人点击了页面上的任意一个行动按钮,那ctr=x/100。这是一个用来衡量推广效果的指标,影响ctr的主要指标是目标客户群是否精准,营销内容对这个群体是否有吸引力。沿着上一段的例子,一号店要在北京做推广,和网易邮箱进行了合作,那这时网易邮箱的数据积累做得怎样,能否提供客户群的精准细分,1号店是否能够利用这样的细分,就成为了其营销转化率的关键。从我数据营销第一层中引用的那个例子来看,貌似所有人收到的是同样的邮件。假如在三八节,一个15-25岁的女孩收到的内容是“给妈妈送个好神拖”,25-35岁的女性收到的是“慰劳一下自己,来一份零食大餐”,25-35的男性收到的是“关心你的女人,保护她的肌肤”,这是多么的和谐与美好啊。这里,推广渠道的数据积累能力给了广告主很大的制约,现在一般的门户网站首页广告投放,最多也就精准到ip地址,有些甚至ip都不能区分,在这样的情况下,精准营销就无从谈起了。在这种情况下,我们b2c的大金主们能做的,就只有自己圈定好目标客户群,再去找这些目标客户群聚集的地方了。一些垂直化的网站和论坛就提供了这方面的很好资源,假如一号店发现网吧里的游戏人群是网络超市的一大客户群,那找pplive这类的游戏频道推点方便面,火腿肠,可乐之类的搭配应该不错。阶段三:浏览客户购买客户 从这一阶段开始,就从网站的外部来到了网站的内部,可控性大大加强,而我们能做的事,也就大大增加了。如果我们把b2c的核心竞争力分为“货好,卖好,送好”的话,从这里开始,在一个又一个的网站细节当中,b2c的前端(卖好)的核心竞争力将被塑造,比较,挑选,最终成为客户选择的一大因素。(下回给大家分享一家arpu值20000多瑞士法郎一年的瑞士网络超市,客户体验很不错)我们从客户进站说起。在最理想的情况下,当一个客户来到一个网站的时候,我们应该能够根据他留下的cookie知道他的信息(如性别,年龄,偏好),再根据他的特点展现给他一个专门为他定制的首页。当然,由于数据积累的限制和成本的考虑,这在目前的条件下还是不可能实现的,但我们还是可以沿着这个思路想想: 1.他是第一次来吗?2.他有没有买过东西?3.他是一个经常买东西的人吗?通过以上3个问题,我们可以把来到首页的人分为几种:新客户,老客户,忠实客户。一个好的首页需要同时兼顾到以上三种人的需求。对于新客户来说,最大的困惑通常是不清楚能在这里干什么,以一号店为例,如果我是新客户,我首先想知道几点:这个网站主要是卖什么的?和其它的b2c网站有啥区别?我为啥不在淘宝上买?这时候网站如何通过产品和视觉让客户第一时间就产生这里是个超市的感觉就是个很大的挑战。在这一点上一号店其实可以做得更好,通过产品和视觉让人第一眼就知道这里是个卖生活必须品的网上超市,这样就把一号店跟京东和当当之类的全品类商场区分开了,然后再把自己相对线上超市购买体验的优势强调出来(便宜,送货上门)。“在网上买生活必须品”是一个非常大的市场,客户粘度也非常高,且目前在网上属于蓝海,这样的定位不占可惜。然后客户来了之后觉得对这个网上的超市有兴趣,愿意尝试,接下来他想的问题就是:那买点啥呢?我在一号店曾经多次为了凑那100块的邮费,缴尽脑汁,我相信碰到这个问题的不止我一个。原因是:生活消费品是一个需求相当分散的领域,光食品中的饮料一项就会有几十个主打品牌。对于一个新客户来说,在来到一号店的时候脑子里是完全没有想到自己要买什么的,而如果他看到他刚好感兴趣的东西也就不会购买。在如此有限的页面空间中要让如此众多不同的客户找到点能买的东西,实在是挺难的。对全新客户来说,数据营销帮不上什么忙,商业sense比数据重要。根据整个超市的定位,找到那些客户喜闻乐见的主流商品,(比如牙膏啊,洗发水啊,卷纸啊之类的),给他们一个尝试的理由(比如比超市便宜,比如不用自己搬等等),可能是个吸引客户初次体验的不错办法。另外,给他们看看其它人都在买啥,搞点各式各样的排行榜对于那些拿不定主意的人也会很有帮助。 我们再来看看到首页的老客户,这些人已经有过购买记录,能第二次来说明第一次的体验比较满意。这时一部分人已经有了明确的购买某些商品的意向(比如家里饼干吃完了),有些人是来“逛”的(看看有啥可买的)。这两种人有非常大的区别,需要的体验也非常不同。对于有明确意向的人,搜索是第一选择,类目是第二选择,首页的产品展示是锦上添花。对于“逛”的人,就复杂了,有人喜欢看看各种各样的活动,有人喜欢从类目里开始逛,有人喜欢看别人买什么,等等。这时通过他浏览时留下的轨迹,我们可以时不时的帮点忙:如果我们发现一个人换了多个关键字,还是没有把东西加入购物车,我们可以把高级搜索弹出来,帮他更精准的找。如果我们发现一个人在某类目下翻类目翻了6页还没点商品,我们可以弹个搜索框,甚至蹦个客服对话框:“您在找什么商品呢?要帮忙吗?”这里我们可以想出非常多的场景,核心逻辑就是根据客户的行为判断他的目的,在他需要帮助的时候帮他一把,让他找的快捷,逛的开心。对于忠实客户来说,他已经有过多次购买的体验,基本不需要我们太多的帮助,让他们飞一会吧后面我们会谈到如何增加他们的arpu值和购买频度的问题。阶段四:购买客户二次购买客户如果一个客户能来第二次,那么他来第三次的可能性将非常之大,第一次购买到第二次购买之间的流失率是最高的。其中最主要的原因肯定是对于购物体验的不满意,货送慢了,东西破了,货发错了等等,这些供应链上的问题不是通过营销能解决的。数据化营销能做到的是在客户基本满意的情况下,促进客户的二次购买。我们先来找接触点,没有接触点就没有营销。当客户付款之后,接触点可能有:发货通知,收货当面,拆箱看到商品,客户投诉等。数据化营销就是把每一个接触点都当成是一个给客户营销的机会,通过数据了解客户的需求,给客户最好的体验。这里的一部分内容已经在第二层:客户生命周期管理里讲过,就不重复了。更多的是对细节的把握,比如:如果一个买了两瓶飘柔的客户拆开包裹的时候看到有送舒肤佳沐浴露的优惠券,是不是会更有可能二次购买呢?如果一个客户在打来投诉电话抱怨快递送货慢的的时候,我们就能够送他一次1月内不限金额直接免邮的权利,他是不是下次更有可能再来呢?这些没法穷尽,如何把数据和商业sense串联起来,创造最优的客户体验,是这里考验的核心技能。也是b2c同质化越来越严重的今天在前端竞争的核心能力。这一块如果大家有兴趣,我们可以就具体的例子来探讨,就不展开了。阶段五:二次购买客户忠诚客户当一个客户来了两次以后,如何培养其成为一个忠诚客户,是b2c行业面临的终极挑战。100元+的单客引入成本,只有把客户变成忠诚客户,才有可能收回。这个话题没法离开行业来讨论,我们还是以一号店为例子来看一下。超市是快速消费品行业,英文叫“fast moving consumer goods”,就是走得很快的消费品。走得很快,意味着大量的重复购买,对于b2c来说,意味着高回头率。真的吗?我觉得不一定,关键得看消费者的习惯是否得到了培养。通常像我这样的消费者在一号店买东西,偶然性非常大。比如我今天发现饼干吃完了,我的第一选择肯定是去家门口的超市买,否则明天早上就没得吃了。在传统超市,不同的人群已经形成了相对固定的购买习惯,家庭主妇可能2天得去一次,学生和上班族可能一周或两周去一次,而在网络上,这种习惯无疑是不存在的。如何才能培养出这样的习惯呢?习惯行为的重复。数据化营销就是通过对人的需求的了解,进行针对性的营销,引导他们产生行为。比如,假设我们通过数据发现70%买了500ml洗发水的客户且有二次购买行为的客户,第二次购买的时间在3045天,那我们就可以设定一条规则,在30天的时候触发一次营销,给客户一些二次购买的促销。基本的逻辑就是通过分析某个群体的数据,发现某个群体的习惯,然后通过营销,强化这种习惯,从而使更多客户有这样的购买习惯。这里很重要的有两点,一是不能自己拍脑袋创造习惯,比如我觉得某洗发水大概20天会用完,而要尽量从数据中去挖掘客户现有的习惯,这才符合客户的真实状况。阶段六:忠诚客户高arpu值客户所谓arpu就是每用户平均收入(arpu-average revenue per user)。高arpu值和两个因素有关:购买频度,客单价。上面我们已经大致讲了如何通过数据营销增加购买频度,我们再来看看如何通过数据营销增加一号店的客单价。关联推荐:“关联推荐”是可以整体提升客单价的,可以系统做也可以手动做。淘宝的卖家基本是手动在做,效果也不错,一号店现在看到有自动的关联推荐,不知效果如何。从淘宝做关联推荐的经验来看,自动推荐要做好难度还是很大的。手工是一种更容易见效
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030有色金属冶炼行业产业运行态势及投资规划深度研究报告
- 保健品员工考试题及答案
- 心内科化验检查
- 小班健康教案:刷牙洗脸好习惯养成
- 安徽监理考试题库及答案
- 海安高三数学试卷
- 江苏近年高考数学试卷
- 2025-2030中国男士西服套装行业市场深度调研及发展前景与投融资战略规划研究报告
- 2025-2030中国电信应用程序编程接口(API)行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国现场服务管理软件行业市场发展趋势与前景展望战略研究报告
- 汽车网销电话邀约话术培训
- 江苏省南京市2024-2025学年高二(下)期末物理试卷
- 煤矿掘进试题库及答案
- 妊娠期合并阑尾炎的护理
- 2025至2030中国焦化行业市场发展分析及发展趋势与前景报告
- 音乐数据分析与用户行为研究-洞察阐释
- 2025至2030中国电子级磷酸行业市场发展分析及市场需求与投资方向报告
- 电力维修抢险方案(3篇)
- 民警心理健康课件
- 幼小衔接汉语拼音课件(合集)
- DZ∕T 0148-2014 水文水井地质钻探规程(正式版)
评论
0/150
提交评论