焦炉煤气培训资料.doc_第1页
焦炉煤气培训资料.doc_第2页
焦炉煤气培训资料.doc_第3页
焦炉煤气培训资料.doc_第4页
焦炉煤气培训资料.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

焦炉煤气是宝贵的资源,作为工业或民用燃料,是一种清洁能源,具有较高的热值;作为化工原料气,可生产甲醇或二甲醚等。在炼焦过程中原料煤中约3035的硫转化成H2S等硫化物,与NH3和HCN等一起形成煤气中的杂质。H2S和HCN具有很强的腐蚀性、毒性,在空气中含有0.1的H2S就能使人致命。焦炉煤气若不脱除H2S会严重腐蚀设备;作为民用燃料会污染环境,损害人身健康;作为冶金燃料使用时则会严重影响钢铁产品与化工产品的质量;作为原料气生产甲醇会严重的影响合成催化剂的使用寿命,同时在燃烧时会产生大量的二氧化硫等有害物质,污染大气,严重时会形成酸雨。本人曾在山西、云南、内蒙等多省数个焦化厂做过相关领域的考察和应用,可以说焦炉气脱硫很多不被企业所重视,许多焦化厂甚至没有脱硫装置。最近几年随着国家环保政策的出台和加强以及延伸产品的生产,焦化厂纷纷开始增设脱硫系统,加强了脱硫技术的学习和改造。所以借这次东狮协作网会议的平台从以下几个方面和大家交流一下。1 焦炉气脱硫值得关注的几个问题焦炉气脱硫,经过几十年的发展形成了一些传统流程,该流程具有流程简单、易操作、生产稳定和建设投资低的优点,在多年的焦化生产中发挥了重要的作用。最近几年,随着焦化技术的不断进步,为了达到更好的脱硫效果,很多厂在实际运行中有了些变化,这些变化应该说还是值得借鉴的。1.1脱硫塔的设置对于焦炉气脱硫由于进口H2S含量一般都很高,从几克到几十克每标方不等。在脱硫工程设计时一般都设计成双系统即可并联操作、亦可串联运行。双脱硫塔并联操作时,脱硫系统阻力小,单塔负荷低不容易堵塔。但脱硫效率不如双塔串联运行时高。考虑到焦炉气入口硫化氢较高,脱硫装置最好采用双塔串联的运行方式。从不断提高脱硫效率的角度来考虑,尤其是焦炉气制甲醇要求出口小于20mg/m3,焦化厂脱硫也应该采用串联流程。为了克服塔阻力和塔堵的问题,脱硫塔的喷淋密度应大于50m3/m2h,同时加强硫泡沫的浮选,降低悬浮硫含量等来减少堵塔的几率。另外,前塔可以尝试空塔喷塔(即采用高效雾化喷头取代轻瓷填料),后塔采用空塔喷淋+填料的复合型塔(即脱硫塔的中、下段采用高效雾化喷头、空塔喷淋,上段使用填料)的科学组合方式。目前这种组合方式已广泛的应用在化肥行业,具有工作硫容大、溶液循环量小,脱硫效率高,系统压降小等诸多优点,效果十分理想。我想这也可作为今后焦炉煤气脱硫发展的方向,不过由于焦炉气成分复杂,脱硫液比较脏,所以采用空塔喷淋堵塞问题还需要解决。1.2 高塔再生和喷射再生目前焦炉气脱硫的再生采用高塔再生和喷射再生两种方式。这两种方式各有特色。其区别如下: 高塔再生采用空压机提供的压缩空气,需要动力。压缩送风相对稳定,液位、泡沫溢流可以自动控制,由于再生塔比较高,操作不是太方便,但有很多厂增加了视频监控系统后,操作起来比以前方便多了。再生槽再生采用喷射器自吸空气,再生槽再生占地面积稍大一些,高度低,不需要空压机,节省了空压机的动力消耗。 高塔再生只有循环泵,贫液从再生塔顶靠位压自流到脱硫塔内。再生槽再生需要贫液泵和富液泵,单从动力消耗上来讲,再生槽再生比高塔再生动力消耗要大些。关于再生效果,从我个人来看,喷射再生更便于观测再生、溢流状况,稍优于高塔再生,很多厂再生后贫液悬浮硫能达到0.2g/L以下,这在焦化行业属领先水平。 关于投资方面,高塔再生占地面积小,但设备投资较大。喷射再生,设备投资相对较小。当然喷射再生时喷射器易发生硫堵而影响吸空气量,造成再生槽内硫泡沫时好时坏,日常需要维护检修。具体采用那种再生方式,可根据厂家的实际情况考虑。 1.3 调整初冷温度,加强脱硫预净化由于初冷的操作温度高,使煤气中的焦油和萘等不能在初冷工序中回收下来,使焦油和萘在流程中后移,造成后续工序的严重污染,很多厂脱硫液严重的发黄,影响脱硫效率的同时也影响了硫黄质量。因此,初冷温度必须降到尽可能低的程度使其保持22OC,并确保电扑焦电器正常工作,使煤气中的焦油状的物质得到充份净化,防止其在横管预冷器中冷却时形成堵塞,导致被迫停运清扫或冷却效果降低。1.4 脱硫系统低温化(以氨为碱源最好在2025)焦炉煤气中的氨和硫化氢在气相中并未发生化学反应,但一旦进入液相则立即发生化学反应,形成新的化合物。硫化氢溶于水,其溶解度决定于溶液温度,温度降低则硫化氢的溶解度增高,换句话说硫化氢的吸收是放热反应,且在溶液中H2S的浓度5%时,气液相的H2S平衡受亨利定律pH2S=HC支配,式中PH2S平衡时,液体表面H2S的分压,10-6mmHgH亨利系数,10-6mmHgC单位体积溶液中H2S的摩尔分数而亨利系数的大小取决于温度,且随温度的升高而升高,如下列数据所表示的。温 度, 0 5 10 15 20 25 30 40亨利系数H:0.203 0.239 0.278 0.321 0.367 0.414 0.463 0.566可见,欲提高H2S的吸收推动力,降低吸收温度是最有效的措施之一。当然提高液相的碱度提也能有效降低液相表面的PH2S值。在没有煤气预冷塔的情况下,进入脱硫塔的煤气温度高达3035。有专家计算过如果温度能控制在2225,氨含量可提高3 g/L5g/L,H2S的解离度提高近30%。所以,脱硫系统中不设置煤气预冷却设备导致脱硫效率低下的教训,要得到重视。当然很多厂设置了直接式煤气预冷却设备效果也不是很好。直接式煤气预冷却设备在运行中,冷却介质与煤气直接接触,且喷洒密度较大,煤气中的焦油、萘等被洗涤混入其中,并悬浮于冷却氨水中,当冷却氨水进入冷却器冷却时,焦油和萘等杂质会沉附于传热壁表面,极大地恶化传热条件,有的甚至导致冷却器严重堵塞,以至不得不停运处理。另外直接式煤气预冷塔存在煤气冷却过程中氨的流失,两次换热,均需要温差,以至煤气难以降至25以下。在此基础上,很多厂选择间接横管冷却器作脱硫前煤气预冷却设备,效果很不错。1.5脱硫工段的位置考虑到对传统净化流程的改造和脱硫工艺的选择,很多厂煤气净化脱硫位置为:初冷器电捕焦油器 鼓风机中间冷却器脱硫洗苯塔间接终冷塔。流程说明如下: 初冷器选用横管冷却器,并设有轻质焦油喷洒洗萘装置,用低温水冷却,保证集合温度为22左右。这项工艺操作对后流程的打通,关系十分密切。 为保证脱硫温度,在脱硫塔前,必须设有煤气中间冷却器,确保脱硫的低温吸收。 为提高脱硫液中氨含量,将氨水蒸馏塔的氨气补充到脱硫液中,以提高脱硫效率。目前很多厂考虑到煤气流程中温度梯度的合理性,采用了全负压工艺流程。如由我公司设计的东昌焦化厂全负压操作工艺流程:初冷器 洗苯塔电捕焦油器脱硫塔鼓风机硫氨塔脱硫。全负压脱硫与上面提到的流程的比较如下: 由于脱硫工序后置,前面设置了洗苯、电捕焦油器等设备减轻了煤气中夹带的焦油、苯、萘等有机杂质,提高了苯、萘、焦油的回收率。 温度变化控制合理。煤气经初冷器冷凝降温,即使再经过洗苯、洗萘、除油、除尘等处理,温度低于30,满足氨法脱硫要求的吸收温度。脱硫后充分利用了鼓风机的压缩热能,将煤气温度提升至4858,又满足了硫铵生产50左右最佳操作温度,系统温度实现自动控制,煤气无须再经历预冷和预热的两次换热处理,减少了水、电消耗以及剩余氨水循环降温过程的氨损失,既节能又降耗。 降低了投资和运行费用。由于不再使用对脱硫煤气降温的预冷塔、剩余氨水冷却器、循环冷却氨水换热器、循环冷却氨水泵和对硫铵的煤气预热器等设备,极大的减轻了企业运行费用。2 催化剂的选择纵观国内外的脱硫脱氰技术,目前我国采用的典型脱硫脱氰技术主要有TH法(通称湿式氧化法)、FRC 法( 通称催化氧化法)、AS法(通称氨硫联合洗涤法)、改良ADA 法、HPF 法(通称催化氧化氨法)、东狮888-JDS法、栲胶法MEA、VACA法(亦称真空碱法)等。为了使大家对我国焦化行业现行的脱硫技术有一个较全面的了解,下面对我国焦化行业中比较有代表性的几种脱硫技术作一个列举。2.1 AS法脱硫脱氰工艺同样是以煤气中的NH3为碱源,用洗氨塔的富液吸收H2S和HCN,为保证NH3的吸收效率,富氨循环液中氨含量不能过高,因此脱硫的效率较低,一般塔后的H2S和HCN含量只能降至500mg/m3,这是氨硫联合洗涤工艺的根本技术问题。脱硫后的富液在脱氨脱酸塔中解吸,脱出的氨和酸性气体要进行除氨和制酸处理,需消耗大量的耐腐蚀材料和催化剂,流程较长,不易打通。经过多年生产实践证明,AS法脱硫技术由于投资过高等原因,不宜过多推广。2.2 改良A.D.A法脱硫工艺该工艺是钠为碱源,A.D.A为催化剂并在脱硫液中添加适量的偏钒酸钠和酒石酸钾的湿式氧化硫工艺,脱硫和脱氰均可达到很高的效率。国内比较普遍应用在城市(民用)煤气气源厂中,本工艺的弱点一是脱硫废液处理问题,国内工业化装置采用的是提盐工艺,但流程长、操作复杂、能耗高、操作环境恶劣、劳动强度大、所得盐类产品如硫氰酸钠、硫代硫酸钠品位不高,经济效益差。二是硫黄产品收率低、纯度不高,且为保证脱硫需外加碱(碳酸钠),碱耗大,运行成本高。改良A.D.A脱硫工艺近些年已较少被采用了。2.3 H.P.F法焦炉煤气脱硫工艺该法是我国自主创新的脱硫工艺,也同样以煤气中氨为碱源,但脱硫后煤气中氨的回收不是用洗涤吸收工艺而是用饱和器法。因此,可将脱硫液中的含氨量提高到3 g/L4g/L,从而使脱硫效率很高,脱硫后的煤气中H2S和HCN含量可达10 mg/m320mg/m3,这一点可谓此法最大的技术优势。HPF法脱硫工艺中,经氧化再生所得的硫膏或溶融硫的含硫量较低,在工业上应用困难。2.4 888-JDS法888JDS法脱硫的实质是使用888JDS(系列)脱硫催化剂及其相配套的工艺、设备的一种优良的脱硫方法。广泛应用于焦炉气脱硫,特别适合于对净化度要求极高的焦炉气制甲醇的脱硫。888JDS脱硫催化剂是整个工艺的核心,是影响脱硫过程的关键。888JDS催化剂吸氧、截氧能力强,能吸收空气中的氧及液相中的溶解氧而活化,释放出具有极强氧化活性的原子氧,能迅速的将液相中H2S及有机硫化物催化、氧化成单质硫。液相中H2S的摩尔分数不断降低则H2S便可从气相向液相中持续快速的转移,吸收H2S的推动力就会增大。从而在同样的设备条件下可获得更高的脱硫效率。888-JDS对脱硫和再生都有催化作用,使脱硫脱氰工艺更加简化。尤其是最近几年东狮公司研发了很多脱硫过程中配套的产品,如过滤机来进一步的完善硫黄的回收。该过滤机真空度高,滤饼比传统的过滤机水分低。滤饼干度可达70%以上,大大的降低了残液的回收。目前888JDS催化剂已广泛应用于焦化行业。均取得了良好的脱硫效果。如济钢焦化厂,贵州水钢焦化厂等。2.5 栲胶法栲胶法具有资源丰富,价廉易得,副反应少,但是栲胶法需要与钒配合使用,增加了成本,并且钒是有毒物,不利于环保。总的来说通过脱硫效率、能耗、基建投资和日常消耗的对比,认为888-JDS法脱硫脱氰工艺的技术优势是明显的,值得推荐。最近东狮气体净化研究中心经过深入的研究及大量的试验,新研究开发出DST-1型脱硫催化剂及其脱硫工艺,该催化剂无毒、无腐蚀性,并具有硫容量大、再生速率快、悬浮硫和副盐含量低等特点,可广泛地应用于半水煤气、焦炉煤气、天然气等脱硫领域,大家有兴趣的也可以实际考察。3 主要工艺参数的控制3.1脱硫温度温度对吸收反应、再生反应、生成副盐的反应及硫泡沫的浮选都会产生较大的影响,这是脱硫机理所决定的。脱硫塔进口煤气温度:力争30,液温要比气温高25。应设有溶液换热器,冬季时换热器走蒸汽,用于加热脱硫液。在夏季时,换热器走冷却水而移走脱硫液的热量。3.2 溶液成份的控制脱硫液中氨的浓度应保持在10 g/L12g/L。副盐含量(Na2S2O3+ NaCNS)250 g/L3.3 再生空气量的控制高塔再生时,控制再生塔的鼓风强度在110 m3/m2h130 m3/m2h,再生槽再生时根据再生情况可在60m3/m2h110 m3/m2h之间调整。3.4 煤气中焦油雾和萘含量问题煤气中焦油雾含量30mg/m3,萘200mg/m3。随焦炉煤气夹带的焦油、奈及初苯的洗油等杂质进入脱硫液中都会对脱硫系统产生不利的影响。催化剂活性下降,吸收效果变坏。使再生出的硫泡沫浮选困难,悬浮硫高,黏附在填料上会使塔阻力升高。因此必须严格控制初冷器温度及除萘效果,保证电捕正常工作,控制好洗苯工况、严禁夹带洗油等。4 脱硫液的回收和利用焦化厂对硫泡沫的处理一般采用连续熔硫制得硫锭或利用过滤机制成硫饼。连续熔硫工艺因脱硫液在熔硫釡内经过加温后,岀釡的残液中副盐升高返回脱硫系统后会使脱硫液的副盐积累加剧,增加废液的外排量,同时硫錠因含有焦油等杂质而发黑,售价不高,已被逐渐淘汰。目前比较合理的是用过滤机将硫泡沫过滤制得硫饼外售,过滤后的脱硫液返回系统。过滤机主要有板框压滤机、转鼓式真空过滤机、戈尔膜过滤机、离心分离机、DS型硫泡沫专用过滤机等,这里简单的介绍一下过滤效果较好的由我公司自主研发的DS硫泡沫专用过滤机。设备概述:DS型硫泡沫专用真空过滤机是集纳米无机膜技术、超声波技术、自动化控制为一体的新型、高效、节能、环保的固液分离设备,它依据脱硫液组分以及各组分特殊的物化性质采用不同的超微细孔在不影响溶液组分的情况下将硫泡沫中单质硫过滤出来,形成的滤饼可直接装袋销售或进熔硫器进行熔硫;因使用纳米过滤,过滤后的脱硫液含硫极低,过滤后的溶液清亮透彻浊度低(固形物总含量50PPm),且由于是物理性过滤,过滤后溶液的物化性质均没有发生变化,可直接回脱硫系统使用。因此极大节约了能耗、减少了对环境的污染和对系统的危害。工作原理:DS脱硫真空过滤机过滤介质利用纳米陶瓷技术,在真空力的作用下,只能让脱硫液通过超微陶瓷膜孔,而溶液中的机械杂质和单质硫以及气泡却无法通过,保证无真空损失的原理,极大地降低了真空过滤机能耗和过滤液的固形物含量。工作流程:DS脱硫真空过滤机主要包括过滤板、转子、料浆斗、真空系统、清洗系统、控制系统。工作时浸没在料斗的过滤板在真空力和毛细作用下,表面吸附成一层物料,滤液通过滤板至排液罐,干燥区滤饼继续在真空力的作用下脱水。滤饼干燥后通过刮刀卸料,卸料后进入反洗区,通过循环水清洗滤板,从而完成一个工作循环。在过滤机运行7小时后采用超声波和碱水清洗,以保持过滤机的高效运行。形成的滤饼装袋处理或去熔硫釜熔硫。滤饼含水量30%左右。具体采用那种过滤机应根据硫泡沫量的大小及资金情况来综合考虑。5 加强副盐的处理被吸收的H2S大部分转化为元素硫,再生时用空气浮选回收,其余生成(NH4)2S2O3和(NH4)2SO4,被吸收的HCN转化为NH4SCN存在于脱硫液中,这三种铵盐通常被称为副盐,由于废液中富集催化剂,为将催化剂重复利用,往往将废液并入吸收液循环使用,但这会使副盐在体系内不断累积,当三种副盐浓度积累到一定浓度后,将严重影响反应平衡,同时由于脱硫液粘度增加也会降低脱硫液的活性,进而引起脱硫效果的不断下降。焦化企业的实际数据显示,当脱硫液中副盐浓度增长到350g/L后,脱硫效率会迅速下降。目前,国内焦化厂解决脱硫液中副盐累积的办法是将部分脱硫液作为备煤用水,另一部分脱硫液进行排放,然后再补充新水。虽然研究表明,在焦炉的炼焦条件下,掺入配煤中脱硫废液的盐类,在炭化室内高温裂解生成硫化氢后,大部分进入荒煤气中,仅有极少部分参与焦炭反应。所得焦炭含硫量仅增加0.030.05%,焦炭的抗碎和耐磨强度等指标也无明显变化。而且废液中的NH4CNS在高温裂解时转化为N2、NH3和CO2,并不转化为HCN,但脱硫液自身的异味和含盐的环保问题和硫化氢的反复循环的吸收解析,硫的不能彻底分离解析,所以这种处理方式没有从根本上解决问题。脱硫液副盐的累积是困扰众多焦化企业的头痛问题。根据脱硫再生原理可知,在脱硫再生过程中始终伴随着副反应的发生,当副反应物的量累积一定的程度时(达到250g/L以上时)就必须进行排放置换。而副盐NH4SCN和(NH4)2S2O3是有较高经济价值的无机盐,如果将脱硫液中的副盐分离回收,不但可以使脱硫液循环使用不必外排,同时可以通过回收副盐创造经济效益应用脱硫废液处理及副盐资源化利用技术,处理后的氨水全部回收,并可继续用于脱硫系统。少数大型钢铁公司焦化厂采用燃烧还原的方法处理脱硫废液,其投资和运行费用极高而无法得到推广。在这方面济钢焦化厂增加了副盐提取设备,实现废弃物质资源化,这种处理方法值得借鉴。其将脱硫液送往釡内进行抽真空加热浓缩,副盐经冷却后结晶析出,得到Na 2S2O3 和NaCNS的初级产品,然后出售给精细化工厂再进行产品的精制。6 重视数据加强分析在生产过程中,脱硫液组分的分析承担着配合生产和指导生产的作用,是我们前进中的一盏明灯。因此,在脱硫液组分分析方法的选择上,必须做到快速、准确和小试样量,规范和准确是分析工作的灵魂。这几年在实践中我们到很多厂进行了脱硫液分析的指导工作,深感分析对实际生产的重要性。所以希望大家重视起来。1、概述焦炉煤气是重要的中高热值气体燃料,既可用于钢铁生产,也可供城市居民使用,还可作为原料气用于生产合成氨、甲醇等产品,不论采用何种方式利用焦炉煤气,其硫含量都必须降低到一定程度。炼焦煤料中含有0.5%l.2%的硫,其中有20%45%的硫以硫化物形式进入荒煤气中形成硫化氢气体,另外还有相当数量的氰化氢。焦炉产生的粗煤气中含有多种杂质,需要进行净化。焦炉煤气中一般含硫化氢48g/m3,含氨49g/m3,含氰化氢0.51.5g/m3。硫化氢(H2S)及其燃烧产物二氧化硫(SO2)对人体均有毒性,氰化氢的毒性更强。氰化氢和氨在燃烧时生成氮氧化物(NOX),二氧化硫与氮氧化物都是形成酸雨的主要物质,煤气的脱硫脱氰洗氨主要是基于环境保护的需要。此外,对轧制高质量钢材所用燃气的含硫量也有较高的要求,煤气中H2S的存在,不仅会腐蚀粗苯系统设备,而且还会使吸收粗苯的洗油和水形成乳化物,影响油水分离。因此,脱除硫化氢对减轻大气和水质的污染、加强环境保护以及减轻设备腐蚀均有重要意义。2、焦炉煤气脱硫方法近几年,钢铁企业的快速发展带动了焦化行业的发展,其中随着世界环保意识的加强,国内外焦炉煤气脱硫脱氰技术得以迅速开发和改良,先后出现了干式氢氧化铁法、湿式碱法、改良ADA法等脱硫方法。总的来说,煤气的脱硫方法按吸收剂的形态,可分为干法和湿法两大类。2.1焦炉煤气干法脱硫技术干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,多采用固定床原理,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。但是由于气固吸附反应速度较慢,因此该工艺运行的设备一般比较庞大,再者由于吸附剂硫容的限制,脱硫剂更换频繁,消耗量大,而且脱硫剂不易再生,致使运行费用增高,劳动强度大,同时不能回收成品硫,废脱硫剂、废气、废水严重污染环境,因此,在大型焦化和钢铁行业,如果焦炉煤气不进行深加工(如焦炉煤气制甲醇),一般不考虑干法脱硫;中小型焦化厂主要采用干法工艺。目前,干法使用的脱硫剂为氧化铁、氧化锌、氧化铜、氧化钙、氧化锰、活性炭、分子筛以及复合氧化物,甚至还有近年来出现的第二代脱硫剂氧化铈等,其中最常用的是铁系和锌系脱硫剂。2.1.1铁系脱硫剂铁系脱硫剂主要是以氧化铁为主的脱硫剂统称,因为氧化铁具有价廉易得、资源丰富、脱硫速率高、硫容高等特点,成为开发最早、应用最广泛的煤气脱硫剂。国内常用的铁系脱硫剂主要有天然沼铁矿、合成氧化铁、颜料厂及硫酸厂下脚铁泥、硫铁矿灰成型剂、炼钢转炉赤泥及其成型剂等。近年来,很多机构将铁氧化物与其它金属化合物复合,研究新的铁基复合氧化物脱硫剂。其中湖北化学研究所的铁系脱硫剂:EF型多功能氧化铁精脱硫剂(CN1174810),由氧化铁载体和负载的金属化合物组成。该脱硫剂在有氧和无氧条件下均能精脱H2S、COS、CS2、RSH、RSR、RSSR、噻吩等硫化物;耐缺氧复合型金属水合氧化物精脱硫剂(CN1287875),用水合氧化铁Fe2O3?H2O与其它金属元素Ti、Co、Ni、Mo、Zn、Cd、Cr、Hg、Cu、Ag、Sn、Pb、Bi中任一种或一种以上的化合物和/或碱土金属元素Ca、Mg的化合物组成;由酸性废液制备的脱硫剂(CN1060226),该脱硫剂先用含铁或不含铁废酸液制成所需浓度的含铁溶液,再用碱性物质除酸,经氧化、分离、混合成型、干燥而制成;复合型精脱硫剂(CN1127555C)由Fe2O3、ZnO、CaO、MnO2等组成。煤炭科学研究总院研制的一种无定形脱硫剂(CN1616139),以一种天然富含铁、锰、铜、锌等多种金属共生的锰矿粉为主要成分,经粉碎磨细后添加一定量的脱硫助剂和水,与纤维物质均匀混合制备而成;常温成型氧化铁脱硫剂BMC,选用亚铁盐为铁基原料,辅以各种助剂合成氢氧化铁,再经过沉淀熟化、烘干等工艺制备而成。北京三聚环保新材料股份有限公司的无定形羟基氧化铁脱硫剂硫容高,单次硫容可达50%以上,而且该脱硫剂可以再生。其脱硫再生原理为:Fe2O3?xH2O+3H2S=Fe2S3?xH2O+3H2O;Fe2S3?xH2O+3/2O2=Fe2O3?xH2O+3S2.1.2锌系脱硫剂锌氧化物与H2S反应平衡常数较大,可将出口处H2S降低到几个ppm以下,因而受到广泛关注,已作为精脱硫剂广泛应用。但纯氧化锌硫容较低,并且在870K以上氧化锌易被还原为单质锌而挥发损失。近来很多学者研究出了锌钛脱硫剂(钛酸锌),铁酸锌等复合氧化物脱硫剂,还有在氧化锌或钛酸锌中加入氧化铜、石墨等物质,这些脱硫剂改善了单一的氧化锌脱硫剂存在的缺点。目前,国内氧化锌脱硫剂的型号有T302Q、T305、T306、KT310、JX-4C、JX-4D等10余种。提高氧化锌的常温硫容一直是氧化锌脱硫技术的研究重点。解决此问题主要从以下二方面入手:(1)提高脱硫剂的比表面,加大其传质面积;(2)向氧化锌中加入一些物质,增加反应的活性中心,以提高其常温硫容。T306型脱硫剂由于添加了特种助剂,使其在操作温度较低(约180)时,对简单有机硫也有较好的脱除效果。另外,研制具有有机硫转化和脱硫双功能的锌系脱硫剂也非常具有市场。20世纪90年代研制出的T313和SHT512型脱硫剂以及北京三聚环保新材料有限公司最新研制的JX-4D脱硫剂,不仅能脱除硫化氢还能脱除有机硫,而且价格低廉。国内外锌系脱硫剂总的发展趋势仍是降低产品堆密度和使用温度,提高脱硫精度,在保证低温高硫容、高脱硫精度下进一步提高抗压碎力,以降低阻力、扩大使用领域。2.1.3其他脱硫剂钙系脱硫剂:钙系脱硫剂有石灰石(CaCO3)、消石灰(Ca(OH)2)、白云石(CaCO3?MgCO3)等(脱硫率较低)以及复合钙系脱硫剂,如铁钙脱硫剂、锌钙脱硫剂等。铜氧化物作为焦炉煤气脱硫剂具有较高的脱硫效率,但单一的CuO脱硫剂也存在硫容低、不耐高温等特点,常与其它金属化合物复合,如CuO-Al2O3,CuO-Cr2O3,Cu-Mn-Al等复合氧化物脱硫剂应用较多。氧化锰的脱硫精度不高,一般也不单独使用,常与氧化铜、氧化铁、氧化铝等复合,可改善其脱硫性能。2.2焦炉煤气湿法脱硫技术湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢和氰化氢,按溶液的吸收和再生性质又分为湿式氧化法、化学吸收法、物理吸附法和物理化学吸收法。湿式氧化法的特点是采用脱硫催化剂(或载氧体)在液相下进行氧化还原反应,使被弱碱溶液吸收的硫化氢随即被氧化成单质硫析出来,同时吸收液得到再生。该法是焦炉煤气脱硫脱氰比较普遍使用的方法,其实质就是使HS-被氧化成单质硫(S0);化学吸收法、物理吸附法和物理化学吸收法三种方法主要用于天然气和炼油厂的煤气脱硫,不能直接回收硫磺,在焦炉煤气脱硫脱氰中较少使用。2.2.1FRC法FRC法由日本开发研制,利用焦炉煤气中的氨,在催化剂苦味酸的作用下脱除H2S,利用多硫化铵脱除HCN。其装置是由吸收塔和再生塔组成,前者用以吸收粗煤气中的硫化氢,后者用以硫化氢氧化和催化剂再生。将煤气用弗玛克斯液洗涤,所含硫化氢被洗涤液吸收后,脱硫即可完成,其吸收反应为:NH3+H2S=NH4HS。将吸收污液送入再生塔,使之与空气接触,氧化硫化氢的同时再生催化剂,然后送回吸收塔顶循环,循环液中悬浮再生的固体硫磺,用离心机分离回收。该工艺脱硫效率高达99%以上、脱氰效率为93%,煤气经吸收塔后,H2S可降到20mg/m3,HCN可降到100mg/m3。催化剂苦味酸耗量少且便宜易得,操作费用低;再生率高,新空气用量少、废气含氧量低,无二次污染。但因苦味酸是爆炸危险品,运输存储困难,且工艺流程长、占地多、投资大等因素,其使用受到一定限制。2.2.2HPF法HPF法是国内自行开发的以氨为碱源、HPF为复合催化剂的湿式液相催化氧化脱硫脱氰工艺,主要由脱硫和再生两部分组成。该法也是以煤气中的氨为碱源,脱硫液在吸收了煤气中H2S后,在复合催化剂HPF作用下氧化再生,最终H2S转化为单体硫得以除去,脱硫液循环使用,生成的硫泡沫放人熔硫釜,经间歇熔硫、冷却成型后外售。HPF催化剂活性高、流动性好,不仅对脱硫脱氰过程起催化作用,而且对再生过程也有催化作用,脱硫脱氰效率高。该方法在脱硫脱氰过程中,循环脱硫液中盐类积累速度缓慢,废液量较其他湿式氧化法少,直接回兑炼焦配煤中,处理简单和经济。HPF法具有设备简单、操作方便稳定、脱硫效率高、流程短、一次性投资少等特点,已在许多焦化企业得到推广应用,但是经该工艺的得到的硫磺质量较差,收得率也比较低,熔硫操作环境有待改善。2.2.3OPT法OPT法脱硫脱氰工艺是20世纪90年代鞍山热能研究院开发的一种以氨为碱源、用OP型复合催化剂为主要原料的脱硫方法。该法脱硫效率稳定在99%上,脱氰效率也高达98%99%。该法有如下优点:以煤气中的氨为碱源,并且充分利用煤气中的氯,不需要外加碱源;工艺设置在煤气净化的上游,减轻了硫化氢、氰化氢等有害物质对后续设备的腐蚀和对环境的污染;可适应高温煤气,毋需强制冷却煤气,能耗低;工艺流程短,操作简单,建设和维修费用低;操作弹性大,当煤气中的硫化氢含量及脱硫液中催化剂浓度、副盐浓度、悬浮硫含量等因素波动较大时,对脱硫脱氰的效率影响很小,这在生产中具有较大的实用价值。2.2.4DDS法DDS技术是一种全新的脱硫技术。此技术脱硫效率高(可达90%)、综合经济效益好,已被70余家企业用于半水煤气、变换气的脱硫。其脱硫原理与传统脱硫有所不同,从其使用过程中活性的激发及对有机硫的高脱除率来分析,具有生物和化学吸收、吸附的二重性。将其用于有机硫含量高的焦炉气脱硫,有利于焦炉气的深加工或用于城市燃气,具有明显的经济效益和社会效益。DDS溶液由DDS催化剂(附带有好氧菌)、DDS催化剂辅料(多酚类物质,一般采用对苯二酚表示)、B型DDS催化剂辅料、活性碳酸亚铁、碳酸钠(或碳酸钾)和水组成。在碱性条件下,受DDS催化剂分子的启发和诱导,DDS催化剂辅料、B型DDS催化剂辅料和碳酸亚铁在好氧菌的作用下,即可生成活性DDS催化剂分子,为DDS催化剂的生存和保持高活性提供环境保障。2.2.5MEA法MEA法是采用单乙醇胺NH2(CH2)3-OH作为吸收剂的脱硫方法。该法是由美国的伯利恒钢铁公司等共同研制而成的,主要使用浓度为15%左右的单乙醇胺(MEA)水溶液作为吸收剂吸收煤气中的硫化氢(H2S)、氰化氢(HCN),同时也吸收CO2、NH3、COS和CS2,脱硫效率达98%。焦炉煤气进入脱硫脱氰塔后,与13%15%的MEA水溶液接触,吸收煤气中的H2S,HCN和CO2,吸收酸性气体后为富液,经解吸生成酸性气体,用于制备浓度为98的硫酸。解吸后脱去酸性气体的吸收液为贫液,从解吸塔底流入再沸器,在此用蒸汽间接加热,产生的蒸汽作为解吸塔的解吸气源,溶液进入MEA调整槽,经换热器、贫液冷却器后,再经过过滤器进入脱硫脱氰塔,这样不断循环达到脱硫脱氰的目的。该法存在以下问题:解吸塔冷凝液或去氨水大槽,或去生化处理;再生塔排渣带出部分溶液,酸性气体分离器底部也需要定期排液;硫酸装置中冷却塔的冷凝液、气体降温器的冷凝液以及除害塔的硫铵母液等均需经硫铵装置处理等。目前,国内宝钢有用该技术,其他的焦化和钢铁工业未见相关报道。2.2.6AS法AS法是氨-硫化氢循环洗涤法的简称,该技术由德国开发研制,在我国已广泛应用。其脱硫过程是利用焦炉煤气中的氨,用洗氨液吸收煤气中H2S,富含H2S和NH3的液体经脱酸蒸氨后再循环洗氨脱硫。AS循环脱硫工艺为粗脱硫,操作费用低,脱硫效率在90%以上,脱硫后煤气中的H2S在200500mg/m3,可以通过控制氨水浓度和改善操作条件,或与干法脱硫串联使用来满足工业和民用对煤气净化的要求。利用AS法进行粗脱硫可以节省精脱硫脱硫剂的消耗。2.2.7ADA法及改良ADA法ADA法是以蒽醌二磺酸钠(ADA)为催化剂,以稀碳酸钠溶液为吸收剂的脱硫、脱氰方法。在ADA法溶液中添加适量的偏硅酸钠(NaVO3)、酒石酸钾钠(NaKC4H4O6)和FeCL3,作为吸收液进行脱硫、脱氰,称改良ADA法。国内普遍应用于市民用煤气净化工艺中,脱硫效率在98%以上。其缺点是悬浮液的硫磺颗粒小,回收困难,易造成过滤器堵塞;有副反应发生,使脱硫液消耗量增大;有机硫和HCN的脱除效率差;脱硫废液处理困难。国内工业化装置多采用提盐工艺,但流程长、操作复杂、能耗高、操作环境恶劣、劳动强度大、所得盐类产品如硫氰酸钠和硫代硫酸钠品位不高、经济效益差、易造成二次污染、有细菌积累、腐蚀严重。2.2.8TH法该技术由Takahax脱硫脱氰和Hirohax废液处理两部分组成。以煤气中氨为碱源,1,4-萘醌-2-磺酸钠为催化剂的氧化法脱硫脱氰工艺。工艺特点:脱硫脱氰效率高、自带氨、运行成本低;煤气中的HCN先经脱硫转化为NH4SCN,再经湿式氧化转化为(NH4)2SO4随母液送往硫铵装置。与其他技术相比,该技术具有硫铵产量高、流程简单、操作费用低、蒸汽耗量少等优点。但是TH法也有以下不足:在高温高压和强腐蚀环境下操作,对主要处理装置的材质要求高,制造难度大;吸收所需液气比、再生所需空气量较大,废液处理操作压力高,故整个装置电耗大,投资和运行费用高;所需催化剂目前尚需进口等。目前除宝钢有这套装置外,其他焦化厂尚未采用此工艺。2.2.9TV法TV法又称栲胶法,由我国自主开发,是目前国内使用较多的脱硫方法之一。其原理是以栲胶为主催化剂,湿式二元氧化脱硫法以栲胶的碱性氧化降解物为中间载氧体,并作为钒的络合剂与碱钒配成水溶液,将气态硫化氢吸收并转化为单质硫,该方法可使H2S降低至20mg/m3以下,脱硫效率达99以上。该技术具有硫容高、副反应少、传质速率快、脱硫效率高且稳定、原料消耗低、腐蚀轻、硫回收率高、操作弹性大、资源丰富等优点,栲胶需要熟化预处理,因此栲胶质量及其配制方法得当与否是决定栲胶法使用效果的主要因素。P型和V型栲胶不需预处理可以直接加入系统。但是,栲胶需要熟化预处理,栲胶质量及其配制方法得当与否是决定栲胶法使用效果的主要因素。2.2.10PDS法PDS法由我国自主开发,是以双核酞菁钴磺酸盐为脱硫催化剂的脱硫方法。PDS催化活性好、用量小、无毒。其工艺特点是脱硫脱氰能力优于ADA溶液;抗中毒能力强,对设备的腐蚀性小;易再生,易分离单质硫,回收率高,有机硫脱除率在50以上;可单独使用,不加钒,不外排废液,不堵塔;脱硫成本只有ADA法的30%左右,运行经济,是非常具有竞争力的方法。当PDS质量浓度大于3.010-6时,脱硫效率可达98以上。PDS脱硫催化剂具有较高的硫容,适用于高硫焦炉煤气的初脱硫但不适用于精脱硫。该法碱耗低,副产物硫氰酸钠和硫代硫酸钠提取方便、质量优。经过不断改进和完善,PDS可以和ADA、栲胶联合使用,效果很好。通过脱硫液的pH值和总碱度、进塔煤气温度和循环脱硫液温度、循环脱硫液与煤气液气比的控制,选择PDS溶液和碱液加入方式及时收集硫泡沫,可以优化PDS法煤气脱硫装置的运行。3、焦炉煤气脱硫技术有待解决的问题焦炉煤气中的硫化氢、氰化氢是有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论